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What is differential algebra? It is the subject studying algebraic differential equations from the
algebraic standpoint.

Examples of algebraic differential equations:

(1) d2y
dt2

+ 2dy
dt + 5y = 0 (linear ordinary differential equation).

(2) (dydt )
2 − 4y = 0 (nonlinear ordinary differential equation).

(3) Heat Equation: ∂u
∂t = γ(∂

2u
∂x2 + ∂2u

∂y2
+ ∂2u

∂z2
) (linear partial differential equation).

(4) KDV Equation: ∂u
∂t −

∂3u
∂x3 − 6u∂u

∂x = 0 (nonlinear partial differential equation).

In differential algebra, we are not interested in “solving”. In fact, it is very hard to solve differential
equations in closed form solutions and in general impossible. Our perspective is rather to study the
solutions and their properties from an abstract, purely algebraic point of view. This subject enjoys
many analogies with commutative algebra and algebraic geometry. Since polynomial equations are
algebraic differential equations of order 0, differential algebra could be regarded as a generalization
of classical algebraic geometry.

The main focus of this course is to study the set of solutions of a general system of differential
polynomials in finitely many differential variables over a differential field. These solution sets are
called differential varieties.

We address questions like:

(1) Can we replace an infinite system of algebraic differential equations by a finite system without
changing the solutions? (Ritt-Raudenbush basis theorem)

(2) Decompose a system of algebraic differential equations into finitely many “irreducible” system?

(3) Give a criterion to test whether a system of differential equations have a solution or not?
(Differential Hilbert’s Nullstellensatz )



Chapter 1

Basic Notions of Differential Algebra

In this chapter, we introduce the very basic definitions and constructions of differential algebra and
establish some first theorems concerning differential ideals.

1.1 Differential rings

All rings in this course are assumed to be commutative rings with unity 1.

Definition 1.1.1. A derivation on a ring R is a map δ : R→ R s.t. for ∀ a, b ∈ R,

1) δ(a+ b) = δ(a) + δ(b);

2) (Leibniz rule) δ(ab) = δ(a)b+ aδ(b).

In this case, the element δ(a) is called the derivative of a. Denote δ(a), δ2(a), . . . , δn(a) for the
successive derivatives, by induction on n, we obtain

Leibnize rule : δn(ab) =
n∑

i=0

(
n
i

)
δn−i(a)δi(b).

Clearly,

1) ∀a ∈ R, δ(an) = nan−1δ(a).

2) δ(0) = δ(0 + 0) = 2δ(0)⇒ δ(0) = 0.
δ(1) = δ(12) = 2δ(1)⇒ δ(1) = 0⇒ ∀n ∈ Z, δ(n) = 0.

3) If a−1 ∈ R, δ(1) = δ(a · a−1) = δ(a) · a−1 + a · δ(a−1) = 0⇒ δ(a−1) = − δ(a)
a2

.

Lemma 1.1.2. Let R be an integral domain and δ a derivation on R. Then δ has a unique extension
to the quotient field Frac(R).

Proof. To show Existence. Define for each a
b ∈ Frac(R), δ(ab ) =

δ(a)b−aδ(b)
b2

and show δ : Frac(R)→
Frac(R) is 1○ well-defined and 2○ it is a derivation.

1○ Suppose a
b = c

d ⇒ ad = bc and δ(a)d+aδ(d) = δ(b)c+bδ(c). Show δ(ab ) =
δ(a)b−aδ(b)

b2
= δ( cd) =

δ(c)d−cδ(d)
d2

.

2○ Show δ(ab +
c
d) = δ(ab ) + δ( cd) and δ(ab ·

c
d) = δ(ab )

c
d + a

b δ(
c
d).

Uniqueness. ∀ab ∈ Frac(R), δ(a) = δ(ab · b) = δ(ab )b+
a
b δ(b)⇒ δ(ab ) =

bδ(a)−aδ(b)
b2

.
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6 CHAPTER 1. BASIC NOTIONS OF DIFFERENTIAL ALGEBRA

Definition 1.1.3. A differential ring is a commutative ring R with unity 1 together with a finite set
∆ = {δ1, . . . , δm} of mutually commuting derivation operators

(
i.e.,∀a ∈ R, δi(δj(a)) = δj(δi(a))

)
,

denoted by (R,∆).

• If card(∆) = 1(i.e.,∆ = {δ}), (R, δ) is called an ordinary differential ring.

• If card(∆) > 1, (R,∆) is called a partial differential ring.

If R is also a field, (R,∆) is called a differential field.

Examples:

1) Let R be a commutative ring with unity. Define δ : R → R by δ(a) = 0 for ∀a ∈ R. Then
(R, δ) is a differential ring. The rings Z, Q, Zn have no other derivation operators than the
zero derivation.

2) Let R = Q[x], δ(x) = 1. For any a0, a1, . . . , an ∈ Q, δ(a0+a1x+ · · ·+anxn) = δ(a0)+δ(a1x)+
· · ·+ δ(anx

n) = a1 + 2a2x+ · · ·+ nanx
n−1. (R, δ) is a differential ring.

3) Let F be a field of meromorphic functions of n complex variables x1, . . . , xn in a region of Cn.
Then (F, { ∂

∂x1
, . . . , ∂

∂xn
}) is a differential field.

4) If (S, δ) is an ordinary differential ring and R = S[x] ,then for any arbitrary f ∈ R, δ(x) = f
turns R into a differential ring.
But this notion of arbitrarily defining derivation doesn’t work for the partial case.
Non-Exampe: R = Q[x]. Let δ1(x) = 1, δ2(x) = x. Since δ1(δ2(x)) = 1 ̸= δ2(δ1(x)) = 0,
(R, {δ1, δ2}) is not a differential ring.

In this course, we focus on the ordinary differential case and for simplicity, we sometimes use “δ-”
instead of “differential”. Denote Θ = {δi| i ∈ N}.

Definition 1.1.4. Let (R, δ) be a differential ring and R0 ⊆ R be a subring of R. If δ(R0) ⊆ R0,
then (R0, δ|R0) is a differential ring. In this case, we say R0 a differential subring of R and say R
a differential overring of R0.

If S ⊆ R, there exists a smallest differential subring of R containing all the elements of R0 and
S, denoted by R0{S}, and S is said to be a set of generators of the differential ring R0{S} over R0.
R0{S} coincides, as a ring, with the ring R0[(δ

is)s∈S, i∈N]. A differential overring of a differential
ring R0 is said to be finitely generated over R0 if it has a finite set of generators over R0.

If both R0 and R are differential fields, R0 is said to be a differential subfield of R and R is said
to be a differential field extension of R0.

Let L be a differential field extension of K and S ⊆ L. Denote by K[S], K{S}, K(S) and
K⟨S⟩ the smallest ring, the smallest differential ring, the smallest field, the smallest differential field
containing K and S. Let Θ(S) = {δi(s) | i ∈ N, s ∈ S}. Then K{S} = K[Θ(S)], K⟨S⟩ = K(Θ(S)).
L is said to be finitely generated if ∃ a finite subset {a1, a2, . . . , an} ⊆ L s.t. L = K⟨a1, . . . , an⟩.

Definition 1.1.5. Let (R, δ) be a differential ring. An element c ∈ R is said to be a constant if
δ(c) = 0. The set of all constants of R is a differential subring of R, called the ring of constants of R,
denoted by CR. If R is a differential field, CR is a field, called the field of constants of R.



1.2. DIFFERENTIAL IDEALS 7

Examples:

1) R = Q[x], δ(x) = 1. CR = Q.

2) R = Zp(x
p), δ(x) = 1. Then CR = R.

Lemma 1.1.6. Let (F , δ) be a differential field of characteristic 0 and CF = F . Let L ⊇ F be a
differential field extension and L be algebraic over F . Then CL = L.

Proof. Let a ∈ L. Suppose p(x) = anx
n + · · · + a1x + a0 ∈ F [x] is the minimal polynomial of a.

Then δ(p(a)) = ∂p
∂x(a) · δ(a) +

∑n
i=0 δ(ai)a

i = ∂p
∂x(a) · δ(a) = 0. Since char(F) = 0 and ∂p

∂x(a) ̸= 0.
Thus δ(a) = 0.

Remark: Let L ⊇ F ⊇ Q and a ∈ L. If a is algebraic over CF , then δ(a) = 0.

1.2 Differential ideals

Definition 1.2.1. Let (R, δ) be a differential ring. An ideal I ◁R is a differential ideal if δ(I) ⊆ I.

Example: Both I = (0) and I = R are differential ideals of R.

Proposition 1.2.2. Let I = (f1, . . . , fs) ⊆ (R, δ) be the ideal in (R, δ) generated by f1, . . . , fs. Then
I is a differential ideal ⇐⇒ ∀i, δ(fi) ∈ I.

Proof. “⇒” Trivial by definition.
“⇐” For each f ∈ I, ∃ g1, . . . , gs ∈ R s.t. f = g1f1 + · · · + gsfs. So δ(f) =

∑s
i=1 δ(gi)fi +∑s

i=1 δ(fi)gi ∈ I, for δ(fi) ∈ I by hypothesis. Thus, δ(I) ⊆ I.

Notation: Let S ⊆ (R,∆). We use [S] to denote the smallest differential ideal of R generated by
S. Clearly, [S] = (Θ(S)) = (δis : s ∈ S).

Example: Consider (Q[x], δ) with δ(x) = 1. Then [0] and Q[x] are the only differential ideals in
Q[x]. (Indeed, let [0] ̸= I ◁Q[x] be a differential ideal. Then ∃ 0 ̸= f ∈ Q[x] s.t. I = (f). Since I is
a differential ideal, δ(f) = ∂f

∂x ∈ (f). If f /∈ Q, f ∤ ∂f
∂x . So, f ∈ Q\{0} and I = Q[x] follows.)

An ideal I ◁ (R, δ) is called a radical (resp. prime) differential ideal if

1) δ(I) ⊆ I , and

2) I is a radical ideal (resp. prime ideal).

Notation: Given I ◁R,
√
I = {f ∈ R | ∃n ∈ N s.t. fn ∈ I}.

Given S ⊆ (R,∆), let {S} be the smallest radical differential ideal containing S, and say {S} is
a radical differential ideal generated by S. (It will be clear in which context {·} denotes a radical
differential ideal or a set).

Now we turn to the construction of radical differnetial ideals. Normally, one may intuitively start
with S, consider [S] and then take its radical

√
[S]. However, this might not be sufficient.

Example: Let (R, δ) with R = Z2[x, y], δ(x) = y and δ(y) = 0. Consider I = [x2]. Since δ(x2) =
0, I = (x2). So

√
I = (x). But

√
I is not a differential ideal for δ(x) = y /∈

√
I. So {x2} ≠

√
[x2].

Exercise: Construct an example of an ideal I ⊆ (R, δ) s.t. [
√
I] is not radical.

(Let R = C[x, y], δ(x) = y and δ(y) = 0. Let I = (xy).
√
I = (xy), [

√
I] = [xy] = (xy, y2). J := [

√
I]

is not radical for y2 ∈ J but y /∈ J .)
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Example: A maximal differential ideal (i.e., a maximal element in the set of all proper differential
ideals) is not necessarily prime. For example, let R = Z2[x] with δ(x) = 1. Let J = [x2] = (x2).
Clearly, J is not prime but J is a maximal differential ideal. Indeed, if ∃ I ◁ (R, δ) with J ⫋ I ⊆ R,
then ∃x+ b ∈ I. But δ(x+ b) = 1 ∈ I, so I = R.

However, if the ring R contains the rational field Q, then the radical of a differential ideal is a radical
differential ideal (i.e., {S, } =

√
[S]).

Theorem 1.2.3. Let (R, δ) be a differential ring, Q ⊆ R and let I ⊆ (R, δ) be a differential ideal.
Then,

√
I is a radical differential ideal.

Proof. It suffices to show
√
I is a differential ideal. For this purpose, for each a ∈

√
I (i.e., ∃ a ∈

N, an ∈ I), to show δ(a) ∈
√
I. Claim: For each k, 1 ≤ k ≤ n, an−k(δ(a))2k−1 ∈ I. We show the

claim by induction on k and δ(a) ∈
√
I will follow by allowing k = n

(
(δ(a))2n−1 ∈ I ⇒ δ(a) ∈

√
I
)
.

If k = 1, δ(an) = nan−1δ(a) ∈ I. Since Q ⊆ R, an−1δ(a) ∈ I. Suppose an−k(δ(a))2k−1 ∈ I for some
1 ≤ k < n. Then, δ(an−k(δ(a))2k−1) = (n − k)an−(k+1)(δ(a))2k + an−k(2k − 1)δ(a)2k−2δ2(a) ∈ I.
Multiply the above by δ(a), we get an−(k+1)(δ(a))2k+1 ∈ I and we are done.

1.3 Decomposition of radical differential ideals

In computational algebraic geometry, we have studied decompositions of radical ideals. In differential
algebra, we have analogous arguments.
Let (R, δ) be a differential ring and let I be a radical differential ideal of R.

Lemma 1.3.1. If ab ∈ I, then aδ(b) ∈ I and δ(a)b ∈ I.

Proof. ab ∈ I ⇒ δ(ab) = δ(a)b+ aδ(b) ∈ I ⇒ aδ(b) · δ(ab) = (aδ(b))2 + abδ(a)δ(b) ∈ I ⇒ (aδ(b))2 ∈
I ⇒ aδ(b) ∈ I and δ(a)b ∈ I.

Lemma 1.3.2. Let S ⊆ R be any subset. Then I : S = {a ∈ R | aS ⊆ I} is a radical differential
ideal.

Proof. 1) ∀a, b ∈ I : S, r ∈ R, aS ⊆ I and bS ⊆ I ⇒ (a+ b)S ⊆ I and raS ⊆ I
⇒ a+ b ∈ I : S, ra ∈ I : S. So I : S is an ideal.

2) ∀a ∈ I : S, aS ⊆ I. By Lemma 1.3.1, δ(a)S ⊆ I ⇒ δ(a) ∈ I : S. So I : S is a differential ideal.

3) ∀a ∈ R, suppose ∃n ∈ N, an ∈ I : S. Then anS ⊆ I. So for ∀s ∈ S, ans ∈ I ×sn−1

=⇒ ansn ∈ I ⇒
as ∈ I for ∀s ∈ S ⇒ a ∈ I : S.

Thus, I : S is a radical differential ideal.

Lemma 1.3.3. Let S be any subset. Let a ∈ R. Then a{S} ⊆ {aS}.

Proof. Consider J = {aS} : a. By Lemma 1.3.2, I is a radical differnetial ideal. Since S ⊆ J, {S} ⊆
J . Thus, a{S} ⊆ {aS}.

Lemma 1.3.4. For all subsets S, T ⊆ R, we have {S}{T} ⊆ {ST}. Furthermore, {S} ∩ {T} =
{ST}.
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Proof. Since for each a ∈ S, by Lemma 1.3.3, a{T} ⊆ {aT} ⊆ {ST}. By Lemma 1.3.2, {ST} : {T}
is a radical differential ideal containing S. Thus, {S}{T} ⊆ {ST}. The assertion {S}∩{T} = {ST}
follows from i) and ii):

i) ST ⊆ {S}, {T} ⇒ {ST} ⊆ {S} ∩ {T};

ii) ∀a ∈ {S} ∩ {T}, a2 ∈ {S} · {T} ⊆ {ST}. So a ∈ {ST}.

We use Lemmas 1.3.1-1.3.4 to show the following:

Lemma 1.3.5. Let T ⊆ R be a subset closed under multiplication and let P be maximal among
radical differential ideals that do not intersect T . Then P is prime.

Proof. Suppose the contrary, i.e., P is not prime. Let a, b ∈ R be such that ab ∈ P but a /∈ P and
b /∈ P . Hence P ⫋ {P, a}, P ⫋ {P, b}. Thus, ∃ t1 ∈ {P, a} ∩ T, ∃ t2 ∈ {P, b} ∩ T . So t1t2 ∈ T but
t1t2 ∈ {P, a} · {P, b} ⊆ {P, ab} = P , a contradiction to P ∩ T = ∅.

In a commutative ring R, the nilradical
√
(0) of R is the intersection of all the prime ideals of

R and every radical ideal of R is the intersection of all prime ideals containing it. In differential
algebra, we have a similar result.

Now, we are ready to state our main theorem of this section.

Theorem 1.3.6. Let I ⫋ R be a radical differential ideal. Then I can be represented as an inter-
section of prime differential ideals.

Proof. We first construct for each x /∈ I a prime differential ideal Px such that Px ⊇ I and x /∈ Px. Let
T = {xn | n ∈ N}. The set U = {P ⊆ R | P is a radical differential ideal of R, I ⊆ P, P ∩ T = ∅}
is nonempty since I ∈ U . By Zorn’s Lemma, ∃ a maximal element Px in U . Px is prime by Lemma
1.3.5, and since Px∩T = ∅, x /∈ Px. Clearly, I = ∩

x/∈I
Px is an intersection of prime differential ideals.

In Section 1.2, we gave an example showing a maximal differential ideal might not be prime. But
if Q ⊆ R, then a maximal differential ideal in R is always prime.

Corollary 1.3.7. Let Q ⊆ (R, δ) and M be maximal among proper differential ideals. Then M is
prime.

Proof. Consider {M} =
√
[M ] =

√
M . If

√
M = R, then 1 ∈

√
M ⇒ 1 ∈ M , which contradicts M

being proper. Therefore,
√
M =M , M is a radical differential ideal. By Theorem 1.3.6, M = ∩

α/∈M
Pα

where Pα is a prime differential ideal. Therefore, for all α /∈M,M = Pα and thus, M is prime.

Remark: A differential ring R with Q ⊆ R is called a Ritt Algebra. We have shown in Section 1.2
and Section 1.3, in a Ritt Algebra:

1) The radical differential ideal {S} =
√

[S];

2) A maximal differential ideal is a prime differential ideal;

3) Even in a Ritt Algebra R, the quotient R/M (M is a maximal differential ideal) might not be
a differential field.
Example: Let R = Q[x] with δ(x) = 1. Then [0] is the unique maximal differential ideal.
R/[0] = R is not a differential field.
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Chapter 2

Differential polynomial rings and
differential varieties

Let (K, δ) be a differential field of characteristic 0. We hope to develop an algebraic structure and
algebraic theory for ordinary differential equations.

Definition 2.0.1. Let (L, δ) be a differential field extension of (K, δ). A subset S of L is said to
be differentially dependent over K if the set (δk(s))k∈N,s∈S is algebraically dependent over K. In
the contrary case, S is said to be δ-independent over K, or a family of differential indeterminates
over K. In the case S = {α}, we say that α is differentially algebraic over K or differentially
transcendental over K respectively.

Example: Let (K, δ) = (Q(x), d
dx) and (L, δ) = (C(x, ex), d

dx). Clearly, each c ∈ C and α = ex are
differentially algebraic over K.

Definition 2.0.2. The ring of differential polynomials with coefficients in K in the differential
indeterminates y1, . . . , yn is the ring of polynomials

K[δkyj | k ∈ N, j = 1, . . . , n], denoted by K{y1, . . . , yn}.

Its elements are called differential polynomials. K{y1, . . . , yn} is a differential ring with the derivation
operator δ extending δ |K and δ(δkyj) = δk+1(yj).

Example:

1) uxx = vx ←→ δ2y1 − δy2 = 0.

2) (dudt )
2 = 4ud2u

dt2
←→ (δy1)

2 − 4y1δ
2(y1) = 0.

Definition 2.0.3. Let (R1, δ1) and (R2.δ2) be two differential rings. A differential homomorphism
of (R1, δ1) to (R2, δ2) is a ring homomorphism φ : R1 → R2 such that φ ◦ δ1 = δ2 ◦ φ. If R0 is a
common differential subring of R1 and R2, and φ |R0= idR0 , φ is called a differential homomorphism
over R0.

a φ(a)

δ1(a) φ(δ1(a))

φ

δ1 δ2

φ

We give two examples of differential homomorphisms:

11
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1) Let (K, δ) ⊆ (L, δ) be two differential fields. Then idK : (K, δ) → (L, δ) is a differential
homomorphism.

2) Take an element a⃗ = (a1, . . . , an) ∈ Ln, then the map

φa⃗ : K{y1, . . . , yn} −→ L
f(y1, . . . , yn) 7−→ f(a1, . . . , an)

δk(yi) 7−→ δk(ai)

is a differential homomorphism over K. (uniquely determined by the value φ(yi).) Here,
f(a1, . . . , an) means replacing δk(yi) for δk(ai) in f(y1, . . . , yn).

Proposition 2.0.4. Let (R1, δ) and (R2, δ) be two differential rings and φ : R1 → R2 be a differential
homomorphism. Then Ker(φ) is a differential ideal.

Proof. Ker(φ) is an ideal of R, since φ is a homomorphism of rings. For each r ∈ Ker(φ), φ(r) = 0,
so δ(φ(r)) = 0 = φ(δ(r))⇒ δ(r) ∈ Ker(φ).

Corollary 2.0.5. Let (R, δ) be a differential ring and I be an ideal of R. Then I is a differential
ideal of R ⇐⇒ (R/I, δ) is a differential ring.

Proof. “⇒” Let r + I ∈ R/I. Define

δ(r + I) = δ(r) + I. (∗)

To show (∗) is well-defined, let r1 + I = r2 + I, we need to show δ(r1) + I = δ(r2) + I. Since
r1 − r2 ∈ I and I is a differential ideal, δ(r1 − r2) = δ(r1)− δ(r2) ∈ I. So δ(r1) + I = δ(r2) + I.
To show (∗) is a derivation on R/I. Let r1+I, r2+I ∈ R/I, then δ(r1+I+r2+I) = δ(r1+r2+I) =
δ(r1)+δ(r2)+I = δ(r1+I)+δ(r2+I) and δ((r1+I)(r2+I)) = δ(r1r2+I) = δ(r1)r2+r1δ(r2)+I =
δ(r1 + I) · (r2 + I) + (r1 + I) · δ(r2 + I).

“⇐” Let φ : R → R/I be defined by φ(r) = r + I for each r ∈ R. Then ∀ r ∈ R,φ(δ(r)) =
δ(r)+I = δ(r+I) = δ(φ(r)), so φ is a differential homomorphism. By Proposition 2.0.4, I = Ker(φ)
is a differential ideal of R.

Definition 2.0.6. Let Σ ⊆ K{y1, . . . , yn} and η = (η1, . . . , ηn) be a point from (L, δ) ⊇ (K, δ). We
call η a differential zero of Σ if for each f ∈ Σ, f(η) = 0, (that is, Σ ⊆ Ker(φη : K{y1, . . . , yn} →
Ln)).

In algebraic geometry, we consider algebraic varieties in an algebraic closed field. In differential
algebra, we have similar concepts to define differential varieties.

Definition 2.0.7. (K, δ) is called differentially closed if for all F ⊆ K{y1, . . . , yn}, if ∃ (L, δ) ⊇
(K, δ) and η ∈ Ln s.t. F (η) = 0, then ∃ ξ ∈ Kn s.t. F (ξ) = 0.
Let (L, δ) ⊇ (K, δ). (L, δ) is called a differential closure of (K, δ) if

1) (L, δ) is differentially closed, and

2) for every differentially closed field (M, δ) ⊇ (K, δ), there is a differential embedding φ : L ↪→M
with φ |K= idK .
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Definition 2.0.8. Let (E, δ) be a fixed differential closure of (K, δ). The set of differential zeros of
Σ ⊆ K{y1, . . . , yn} is called a differential variety over K, denoted by VE(Σ) or V(Σ). For a subset
V ⊆ En, we denote I(V ) = {f ∈ K{y1, . . . , yn} | ∀ξ ∈ V, f(ξ) = 0} to be the set of all differential
polynomials in K{y1, . . . , yn} which vanish at each point of V . Clearly, I(V ) is a radical differential
ideal.

Let η = (η1, . . . , ηn) be a point from a differential extension field of (K, δ). η is called a generic
point of a differential ideal I ⊆ K{y1, . . . , yn} if ∀f ∈ K{y1, . . . , yn}, f(η1, . . . , ηn) = 0⇔ f ∈ I.

Example: In the algebraic case, I = (x2 + y2 − 1) ⊆ Q[x, y] has a generic point ( 2t
1+t2

, 1−t2

1+t2
). Also,

(cos(θ), sin(θ)) is another generic point. So generic points are not unique.

Lemma 2.0.9. Let P ⊆ K{y1, . . . , yn} be a differential ideal. Then P has a generic point ⇔ P is
prime.

Proof. “⇒” Suppose η is a generic point of P . Then P = I(η) is a prime differential ideal.
“⇐” Suppose P is a prime differential ideal. Then K{y1, . . . , yn}/P is a differential domain. Let
L = Frac(K{y1, . . . , yn}/P ) and ȳi = yi+P . Then (ȳ1, . . . , ȳn) ∈ Ln is a generic point of P . Indeed,
∀f ∈ P, f(ȳ1, . . . , ȳn) = f(y1, . . . , yn) + P = 0̄ ∈ L and ∀f ∈ K{y1, . . . , yn}, if f(ȳ1, . . . , ȳn) = 0,
then f(y1, . . . , yn) ∈ P .

In this chapter, we will prove the differential analog of Hilbert basis theorem for the differential
polynomial ring, i.e., the Ritt-Raudenbush basis theorem. Before that, we first introduce character-
istic set method, which is the main computational tool in differential algebra and also could provide
some theoretical insights. The idea behind characteristic sets is similar to the notion of Gröbner
basis.

2.1 Differential characteristic sets

Motivated Example (Ideal membership problem):

1○ In Q[x], every ideal is of the form I = (f) for some f ∈ Q[x]. By the Euclidean division
algorithm, g = qf + r with r = rem(g, f). Then g ∈ I ⇔ r = 0.

2○ In Q[x1, . . . , xn], given an ideal I = (f1, . . . , fs) ⊆ Q[x1, . . . , xn], we use Gröbner basis to test
whether g ∈ I.

3○ How about the differential ideal membership problem? (differential characteristic sets)

Let (K, δ) be a differential field of characteristic zero. The differential polynomial ring
K{Y } ≜ K{y1, . . . , yn} in the differential variables Y = {y1, . . . , yn} can be viewed as a polynomial
ring in the algebraic variables Θ(Y ) ≜ {δi(yj) | i ∈ N, j = 1, . . . , n}. (i.e., K{Y } = K[Θ(Y )])

A differential ranking on Θ(Y ) is a total ordering on Θ(Y ) satisfying

(1) u < δ(u) for all u ∈ Θ(Y ) and

(2) if u, v ∈ Θ(Y ) with u < v, then δ(u) < δ(v).

Example:
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• The set Θ(y) = {δi(y) : i ∈ N} has a unique ranking y < δ(y) < δ2(y) < δ3(y) < · · · .

• Two important rankings on Θ(Y ) are the following:

1) Elimination ranking: yi > yj ⇒ δk(yi) > δl(yj) for any k, l ∈ N.
2) Orderly ranking: k > l⇒ δk(yi) > δl(yj) for all i, j ∈ N.

Lemma 2.1.1. Every ranking is a well-ordering (i.e., every nonempty subset of Θ(Y ) has a least
element).

Proof. Let U ⊆ Θ(Y ) and U ̸= ∅. For each j ∈ {1, . . . , n}, if ∃ i ∈ N s.t. δi(yj) ∈ U , then set
kj = min{i | δi(yj) ∈ U} and set uj = δkj (yj). Then the least element of U is the least element in
the finite set of uj ’s.

Until the end of this subsection, we assume a ranking R is fixed. And by convention, 1 < δi(yj).
(Denote δ(a), δ2(a), δk(a) by a′, a′′, a(k)(k ≥ 3) respectively).

Definition 2.1.2. Let f ∈ K{y1, . . . , yn}\K. The leader of f is the largest element of Θ(Y ) with
respect to R which appears effectively in f , denoted by uf or ld(f). By the two conditions in the
definition of ranking, for each i ∈ N, ld(δi(f)) = δi(ld(f)). We write f as a univariate polynomial
of uf , then f = Id(uf )

d + Id−1(uf )
d−1 + · · · + I1uf + I0, where Ii is free of uf and d = deg(f, uf ).

The leading coefficient Id is called the initial of f and denoted by If . The pair rk(f) := (uf , d) is
called the rank of f .

Example: Let f = (y′)2 − 4y ∈ Q{y}. Then uf = ld(f) = y′ and If = 1. Apple δ to f , then we
have δ(f) = 2y′y′′ − 4y′. So we get uδ(f) = y′′ = δ(uf ) and Iδ(f) = 2y′ = ∂f

∂y′ .

Note that in the above example, deg(δ(f), uδ(f)) = 1 and Iδ(f) =
∂f
∂uf

.

Definition 2.1.3. Let f ∈ K{y1, . . . , yn}\K. ∂f
∂uf

is called the separant of f , denoted by Sf .

Remark:

1) f =
∑d

i=0 Iiuf
i =⇒ δ(f) =

∑d
i=1 Iiδ(uf

i) +
∑d

i=0 δ(Ii)uf
i = (

∑d
i=1 Ii · i · uf i−1)δ(uf )+∑d

i=0 δ(Ii)uf
i = Sf · δ(uf ) +

∑d
i=0 δ(Ii)uf

i.

Note that uδ(f) = δ(uf ), Iδ(f) = Sf and deg(δ(f), uδ(f)) = 1. (char(K) = 0)

Also, for k > 0, δk(f) = Sf · δk(uf ) + tail polynomial involving derivatives less than δk(uf ).

So uδk(f) = δk(uf ), Iδk(f) = Sf , deg(δk(f), uδk(f)) = 1.

((K, δ) is a δ-field, c is algebraic over K ⇒ there is a unique way to make (K(c), δ) a δ-field.)

2) By convention, for f ∈ K\{0}, uf = 1.

Definition 2.1.4. Let f, g ∈ K{Y }, we say that f is partially reduced with respect to g if none of
the proper derivatives of ug (δi(ug) with i > 0) appears effectively in f .

Example:

1) Let f = y2, g = y + 1. Since ug = y and none of the proper derivatives of y appears in f , f is
partially reduced with respect to g.

2) Let f = 2yδ(y)2 + y and g = y + 1. Since δ(ug) = δ(y) appears in the first term of f , f isn’t
partially reduced with respect to g.
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Definition 2.1.5. We say f is reduced with respect to g if

1) f is partially reduced with respect to g, and

2) deg(f, ug) < deg(g, ug).

Definition 2.1.6. A subset A ⊆ K{y1, . . . , yn} is called an autoreduced set if any element of A is
reduced with respect to any other element of A.

Let A ⊆ K{Y }\K and F ∈ K{Y }. We say F is partially reduced w.r.t. A if . . ..
Remark: If an autoreduced set A contains an element A ∈ K\{0}, then A = {A}.

Lemma 2.1.7. Every autoreduced set of K{y1, . . . , yn} is finite.

Proof. Let A be an autoreduced set. For each i = 1, . . . , n, there exists at most one differential
polynomial A ∈ A such that ld(A) = δk(yi) for some k ∈ N, for two differential polynomials A1, A2

with ld(Aj) = δkj (yi) couldn’t be reduced with respect to each other. Thus |A| ≤ n.
(For the partial differential case, we need to use Dickson lemma to show every autoreduced set is
finite.)

Definition 2.1.8. Let f, g ∈ K{y1, . . . , yn}\K. We say f has lower rank than g (f < g) if rk(f) <lex

rk(g). (<lex is a well-ordering of Θ(Y )×N∗.) By convention, each element of K\{0} has lower rank
than elements of K{Y }\K.

Notation: We use f ≤ g to denote either f < g or f and g have the same rank. (“ ≤ ” is a
pre-order among K{y1, . . . , yn}.)

In the following, we write an autoreduced set in the order of increasing rank, i.e., A = A1, . . . , Ap

with rk(A1) <lex rk(A2) <lex · · · <lex rk(Ap).

Let A = A1, . . . , Ap and B = B1, . . . , Bq be two autoreduced sets. We say A < B if either

1) ∃ k (≤ min{p, q}) such that ∀ i < k, rk(Ai) = rk(Bi) and Ak < Bk, or

2) p > q and for each i ≤ q, rk(Ai) = rk(Bi).

If neither A < B nor B < A, we say A and B are of the same rank. A and B have the same rank ⇔
p = q and ∀ i ≤ p, rk(Ai) = rk(Bi). Say A ≤ B iff A < B or A and B have the same rank. (“ ≤ ” is
a pre-order.)

Example: Consider K{y1, y2} and take the orderly ranking with y1 < y2. Let A = {A1 = (y2
′)2 +

1, A2 = y1
′′ + y2}, B = {B1 = y2

′ + 2} and C = {C1 = (y2
′)2 + 2}. Since rk(A1) > rk(B1),B < A.

Since rk(A1) = rk(C1) and |A| > |C|,A < C.

Proposition 2.1.9. Any nonempty set of autoreduced sets in K{Y } = K{y1, . . . , yn} contains an
autoreduced set of lowest rank.

Proof. Let U be any nonempty set of autoreduced sets of K{Y }. Define by induction a sequence of
subsets of U as follows: U0 ≜ U , for i > 0, define Ui = {A ∈ Ui−1 | card(A) ≥ i , the i-th element of
A is of lowest rank}. Then U0 ⊇ U1 ⊇ · · · . By Lemma 2.1.7, ∃ i ∈ N (actually i ≤ n in the ordinary
differential case) such that Ui ̸= ∅ and Ui+1 = ∅. Actually, any element of Ui is an autoreduced set
in U of lowest rank.

Definition 2.1.10. Let I ⊆ K{Y } be a differential ideal. An autoreduced set of lowest rank contained
in I is called a characteristic set of I (with respect to the given ranking).
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Remark: By convention, ∅ and {a} with a ∈ K∗ are autoreduced sets. (Here, rk(a) = (1, 1).)

We start to introduce pesudo-division of differential polynomials:

Lemma 2.1.11. Let A = A1, . . . , Ap be an autoreduced set in K{Y } and F ∈ K{Y }. Then there
exist F̃ ∈ K{Y } and ti ∈ N satisfying

1) F̃ is partially reduced with respect to A,

2) the rank of F̃ is not higher than that of F ,

3)
p∏

i=1
Sti
Ai
F ≡ F̃ mod [A].

More precisely,
p∏

i=1
Sti
Ai
F − F̃ can be expressed as a linear combination of derivatives θ(Ai) with

coefficients in K{Y } such that θ(uAi) ≤ uF .

Proof. If F is partially reduced with respect to A, then set F̃ = F and ti = 0 (i ≤ p). Otherwise,
F contains a proper derivative δk(uAi) of the leader of some Ai. Let vF be such derivatives of the
maximal rank. We shall prove the lemma by induction on vF . Suppose for all G ∈ K{Y } that doesn’t
involve a proper derivative of any uAi of rank ≥ vF , the corresponding G̃ and natural numbers are
defined satisfying the desired properties. There exists a unique A ∈ A such that vF = δk(uA) for
some k > 0. If A =

∑d
i=0 IiuA

i, then

δk(A) = SAδ
k(uA) + T with T having lower rank than δk(uA) = vF .

Denoting l = deg(F, vF ) and write F as F =
∑l

i=0 JivF
i where J0, . . . , Jl don’t involve proper deriva-

tives of any uAi of rank≥ vF . Hence SA
lF =

∑l
i=0 JiSA

l−i(SAvF )
i ≡

∑l
i=0 JiSA

l−i(−T )i mod (δk(A)).
Clearly, G =

∑l
i=0 JiSA

l−i(−T )i doesn’t involve proper derivatives of any uAi of rank ≥ vF .
By the induction hypothesis, ∃ G̃ partially reduced with respect to A and ki ∈ N such that
p∏

i=1
Ski
Ai
G ≡ G̃ mod [A]. Now it suffices to set F̃ = G̃, ti =

{
ki, Ai ̸= A

ki + l, Ai = A
.

Remark: F̃ constructed by the process in the proof is called the partial remainder of F w.r.t A.

Recall the pseudo reduction algorithm in commutative algebra:
Let D be an integral domain and v an indeterminate over D. Let F,A ∈ D[v] be of respective
degrees dF , dA. Suppose A = IdAv

dA + · · ·+ I1v+ I0 ̸= 0 with Ii ∈ D. Let e = max{dF − dA+1, 0}.
Then we can compute unique Q,R ∈ D[v] s.t. IedAF = QA+R and deg(R) < deg(A).

Theorem 2.1.12. Let A = A1, . . . , Ap be an autoreduced set in K{y1, . . . , yn}. If F ∈ K{y1, . . . , yn},
then ∃ a δ-polynomial F0 (δ-remainder of F ) and ri, ti ∈ N such that

1) F0 is reduced w.r.t A,

2) The rank of F0 is no higher than the rank of F ,

3)
p∏

i=1
Sti
Ai

IriAi
F ≡ F0 mod [A].
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Proof. Let F̃ be the partial remainder of F with respect to A and
p∏

i=1
Sti
Ai
F ≡ F̃ mod [A]. Let

rp = max{0,deg(F, uAp)− deg(Ap, uAp) + 1}. Then ∃Fp−1 ∈ K{Y } partially reduced with respect
to A and reduced with respect to Ap such that IrpAp

F̃ ≡ Fp−1 mod (Ap). If p = 1, then we are done.
Otherwise, we can find rp−1 and Fp−2 ∈ K{Y } partially reduced with respect to A and reduced with
respect to Ap−1, Ap s.t. Irp−1

Ap−1
IrpAp

F̃ ≡ Fp−2 mod (Ap−1, Ap) and is not higher than F̃ . Continuing in
this way, we get F0 satisfying the desired properties.

Remark: The reduction procedures above could be summarized in an algorithm, called the Ritt-
Kolchin algorithm to compute the δ-remainder of a δ-polynomial F with respect to an autoreduced
set A. Denote F0 above by δ-rem(F,A), or F →

A
F0.

Example: Consider K{y1, y2} and fix the orderly ranking with y1 > y2.

(1) Let f = y1 and A = A1 = y2y1. Here f →
A

0, and IA1f − 0 ∈ [A].

(2) Let f = y′1 + 1 and A = A1 = y2y
2
1. uA1 = y1 and SA1 = 2y2y1. Clearly, f is not partially

reduced with respect to A. δ(A1) = 2y2y1y
′
1+y

′
2y

2
1. The partial remainder of f with respect to

A is 2y2y1−y′2y21 = f̃ and SA1f−A′
1 = f̃ . IA1 f̃−If̃A1 = y2(2y2y1−y′2y21)−(−y′2)y2y21 = 2y22y1,

reduced with respect to A. So f →
A

2y22y1 and IA1SA1f − 2y22y1 = −y′2A1 + IA1A
′
1 ∈ [A].

Theorem 2.1.13. Let A be an autoreduced set of a proper differential ideal I ⊆ K{y1, . . . , yn}.
Then the followings are equivalent:

(1) A is a characteristic set of I.

(2) ∀f ∈ I, δ-rem(f,A)=0.

(3) I doesn’t contain a nonzero δ-polynomial reduced with respect to A.

Proof. (2)⇔ (3) is clear.
“(1) ⇒ (3)” Suppose f ∈ I\{0} is reduced with respect to A = A1, . . . , Ap. Let k ∈ N be maximal
such that rk(Ak) < rk(f). Then A1, . . . , Ak, f is an autoreduced set lower than A. (Here, in the
case rk(f) < rk(A1), take k = 0 and {f} is an autoreduced set < A.) Thus, we get a contradiction,
and (3) is valid.
“(3) ⇒ (1)” Assume (3) is valid. Suppose A = A1, . . . , Ap is not a characteristic set of I. Then
∃ B = B1, . . . , Bq, an autoreduced set of I of lower rank than A. Thus, by definition, either
(1) ∃ k ≤ min{p, q} such that for i < k, rk(Ai) = rk(Bi) and Ak > Bk, or (2) q > p and for
i ≤ p, rk(Ai) = rk(Bi). Then either Bk or Bp+1 is nonzero and reduced with respect to A.

Remark: By Theorem 2.1.13, if A = A1, . . . , Ap is a characteristic set of I ⊆ K{Y }, then IAi , SAi /∈
I (∀i = 1, . . . , p).

A characteristic set of I can be obtained by the following procedure (non-constructive) : choose
A1 ∈ I of minimal rank. ChooseA2 of minimal rank in the set {f ∈ I | f is reduced with respect to A1}.
ThenA1, A2 is autoreduced. ChooseA3 of minimal rank in the set {f ∈ I | f is reduced with respect to A1, A2}.
Then A1, A2, A3 is autoreduced. Continue like this. The process must terminate for an autoreduced
set is finite. In the end, we will obtain an autoreduced set A := A1, . . . , Ap of I such that no
polynomial in I is reduced with respect to A. Clearly, A is a characteristic set of I.
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Lemma 2.1.14. Let A be a characteristic set of a proper δ-ideal I ⊆ K{Y }. Denote H∞
A to be the

multiplicative set generated by initials and separants of elements in A and set sat(A) := [A] : H∞
A =

{f ∈ K{Y } | ∃M ∈ H∞
A ,Mf ∈ [A]}. Then I ⊆ sat(A). Furthermore, if I is prime, I = sat(A).

Proof. By Theorem 2.1.13, ∀ f ∈ I, δ-rem(f,A) = 0. Thus, ∃ iA, tA ∈ N (A ∈ A) s.t.
∏

A∈A
IiAA StA

A f ∈

[A], i.e., f ∈ sat(A). If I is prime, for each f ∈ sat(A), ∃ iA, tA s.t.
∏

A∈A
IiAA StA

A f ∈ [A] ⊆ I. Since

IA, SA are not in I, f ∈ I.

Exercise: Develop a division algorithm as follows:
Input: f ∈ K{Y } and an autoreduced set A = A1, . . . , Ap w.r.t. a fixed ranking.
Output: g ∈ K{Y }, the δ-remainder of f w.r.t. A.

(
i.e. 1). g is reduced w.r.t. A, 2). ∃ ik, jk ∈ N

s.t. Ii1A1
· · · IipAp

Sj1
A1
· · · Sjp

Ap
f − g ∈ [A]

)
.

2.2 The Ritt-Raudenbush basis theorem

Hilbert basis theorem: Every ideal of K[y1, . . . , yn] is finitely generated. (Every ascending chain of
ideals in K[y1, . . . , yn] is finite.)
One might hope ACC condition holds for differential ideals in K{y1, . . . , yn}. However, this is not
true.
Non-example: Consider K{y} with Q ⊆ (K, δ). The sequence of differential ideals [y2] ⊆
[y2, (y′)2] ⊆ [y2, (y′)2, (y′′)2] ⊆ · · · doesn’t stabilize in K{y}.

Definition 2.2.1. A differential ring is called Ritt-Noetherian if the set of radical differential ideals
satisfies the ascending chain condition (ACC).

Lemma 2.2.2. Let (R, δ) be a differential ring. Then R is Ritt-Noetherian ⇔ every radical dif-
ferential ideal I of R is finitely generated as a radical differential ideal. (i.e. ∃ f1, . . . , fs ∈ I s.t.
I = {f1, . . . , fs}).

Proof. “⇒” Let I be an arbitrary radical differential ideal of R. Suppose I is not finitely generated as
a radical differential ideal. Then we can construct a strict increasing sequence of radical differential
ideals, i.e., {a1} ⫋ {a1, a2} ⫋ · · · ⫋ {a1, a2, . . . , ap} ⫋ · · · .
“⇐” Let I1 ⊆ I2 ⊆ · · · be sequence of radical differential ideals. Take I =

⋃∞
i=1 Ii. Then I is a

radical differential ideal. Thus, ∃ f1, . . . , fs ∈ I s.t. I = {f1, . . . , fs}. Since each fi ∈ I, ∃m ∈ N s.t.
fi ∈ Im (∀ i = 1, . . . , s). So {f1, . . . , fs} ⊆ Im ⊆ I ⇒ Im = Im+j = {f1, . . . , fs} for j ∈ N.

Theorem 2.2.3. Let (K, δ) be a differential field with Q ⊆ K. The differential polynomial ring
K{y1, . . . , yn} is Ritt-Noetherian.

Proof. By Lemma 2.2.2, it suffices to prove that every radical differential ideal of K{y1, . . . , yn} is
finitely generated as radical differential ideals. Suppose the contrary and ∃ a radical differential ideal
of K{y1, . . . , yn} that is not finitely generated. By Zorn’s lemma, ∃ a maximal radical differential
ideal J ⊆ K{y1, . . . , yn} that is not finitely generated.
Claim: J is a prime differential ideal.
If not, then ∃ a, b ∈ K{y1, . . . , yn} s.t. a, b /∈ J but ab ∈ J . Since {a, J} ⫌ J and {b, J} ⫌ J ,
{a, J} and {b, J} are finitely generated as radical differential ideals. Then ∃ f1, . . . , fs, g1, . . . , gt ∈ J
s.t. {a, J} = {a, f1, . . . , fs} and {b, J} = {b, g1, . . . , gt}. (Indeed, as {a, J} is finitely generated,
∃h1, . . . , hl s.t. {a, J} = {h1, . . . , hl}. For each i, hi ∈ {a, J} ⇒ ∃mi s.t. hmi

i ∈ [a, J ]. So
∃ f1, . . . , fs ∈ J s.t. hmi

i ∈ [a, f1, . . . , fs]. Thus, hi ∈ {a, f1, . . . , fs} ⇒ {a, J} ⇒ {h1, . . . , hl} ⊆
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{a, f1, . . . , fs} ⊆ {a, J})
Hence,

J2 ⊆ {a, J} · {b, J} = {a, f1, . . . , fs} · {b, g1, . . . , gt}
⊆ {ab, agj , bfi, figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t} ≜ P

⊆ J.

For each f ∈ J , f2 ∈ J2 ⊆ P ⇒ f ∈ P ⇒ J = P = {ab, agj , bfi, figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t}, which
contradicts to the hypothesis that J is not finitely generated.

Fix a ranking on Θ(Y ) and take a characteristic setA of J under this ranking. LetA = A1, . . . , Ap

and denote IS ≜
p∏

i=1
(IAiSAi) ∈ K{Y }. Since J is prime, J = sat(A) = [A] : H∞

A ⊆ {A} : (IS). Since

IAi , SAi /∈ J for each i, IS /∈ J . Thus {J, IS} is finitely generated as a radical differential ideal. That
is, ∃h1, . . . , hl ∈ J s.t. {J, IS} = {h1, . . . , hl, IS}. Thus,

J2 ⊆ J · {J, IS} = J · {h1, . . . , hl, IS}
⊆ {h1, . . . , hl,A}(for IS · J ⊆ {A})
⊆ J.

Hence, J = {h1, . . . , hl, A1, . . . , Ap}, which leads to a contradiction. So every radical differential
ideal of K{y1, . . . , yn} is finitely generated as a radical differential ideal.

Example 1: [y2] ⫋ [y2, (y′)2] ⫋ [y2, (y′)2, (y′′)2] ⫋ · · · is an infinite increasing sequence of differential
ideals.

Proof. Let In = [y2, (y′)2, . . . , (y(n))2] with n ≥ 0. Define weight for each y(i)y(j) to be wt(y(i)y(j)) =
i+ j. Let Vn be a subspace of K{Y } generated by all y(i)y(j) of degree 2 and weight n. Then we get

V0 = SpanK(y2)
V1 = Spank(yy

′)
V2 = SpanK(yy′′, (y′)2)

V3 = SpanK(yy(3), y′y′′)
...

V2n = SpanK(yy(2n), y′y(2n−1), . . . , (y(n))2)

V2n+1 = SpanK(yy(2n+1), y′y(2n), . . . , y(n)y(n+1))

Clearly, dimV2n = dimV2n+1 = n+ 1 for n ∈ N.
Claim: (1) V2n+2 = SpanK(δ2(V2n), (y

(n+1))2).
(2) In ∩ V2n+2 = SpanK(δ2(V2n)) ⫋ V2n+2.

To show (1), note that δ2(y(k)y(2n−k)) ∈ V2n+2 and
δ2(yy(2n))

δ2(y′y(2n−1))
...

δ2((y(n))2)

(y(n+1))2

 =


1 2 1 · · · 0 0
0 1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 2
0 0 0 · · · 0 1



yy(2n+2)

y′y(2n+1)

...
y(n)y(n+2)

(y(n+1))2


A

Det(A) = 1 ⇒ {δ2(V2n), (y(n+1))2} is a basis of V2n+2 ⇒ (1) is valid.
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To show (2), since V2n ⊆ In 1, SpanK{δ2(V2n)} ⊆ In ∩ V2n+2. And

In ∩V2n+2 ⊆ SpanK(δ2n+2−2k(y(k))2 : k = 0, . . . , n) = SpanK(δ2[δ2n−2k(y(k))2] : k = 0, . . . , n) ⊆ SpanK(δ2(V2n)).

Thus, In ∩ V2n+2 = SpanK(δ2(V2n)) ⫋ V2n+2. Hence, V2n ⊆ In and V2n+2 ̸⊆ In for all n ∈ N. Thus,
In ⫋ In+1 ∀n ∈ N.

Theorem 2.2.4. Let R be a differential ring which is Ritt-Noetherian and Q ⊆ R. Then for every
radical differential ideal I ⫋ R, there exist a finite number of prime differential ideals P1, . . . , Pl s.t.

I =
l⋂

i=1

Pi. (2.1)

Moreover, if (2.1) is irredundant (∀ i,
⋂
j ̸=i

Pj ̸⊆ Pi), then this set of prime ideals is unique. In this

case, P1, . . . , Pl are called prime components of I.

Proof. Suppose the statement is false, i.e., the set A = {I | I ⫋ K{y1, . . . , yn} is a radical differential
ideal and I is not a finite intersection of prime differential ideals} is not empty. Since R is Ritt-
Noetherian, every ascending chain of radical differential ideals has an upper bound in A. By Zorn’s
lemma,A has a maximal element J ∈ A. Clearly, J is not prime. So ∃ a, b /∈ J but ab ∈ J . Thus,
{J, a} ⫌ J and {J, b} ⫌ J . Also, {J, a} ≠ R. Indeed, if not, then 1 ∈ {J, a}. Since Q ⊆ R, 1 ∈ [J, a]
and 1 = f +

∑
∗δk(a), where f ∈ J . By ab ∈ J and J is radical, bδk(a) ∈ J ∀ k ∈ N. So

b = fb+
∑
∗bδk(a) ∈ J , contradicting to b /∈ J . Similarly, {J, b} ≠ R could be shown.

By the maximality of J , ∃P a
1 , . . . , P

a
l , P

b
l+1, . . . , P

b
l+t prime differential ideals in R s.t.

{J, a} = P a
1 ∩ · · · ∩ P a

l and
{J, b} = P b

l+1 ∩ · · · ∩ P b
l+t.

Now show J = {J, a} ∩ {J, b}. Indeed, let f ∈ {J, a} ∩ {J, b}, then f2 ∈ {J, a} · {J, b} ⊆ {J, ab} ⊆
J ⇒ f ∈ J . Thus, J = {J, a} ∩ {J, b} = P a

1 ∩ · · · ∩ P a
l ∩ P b

l+1 ∩ · · · ∩ P b
l+t, contradicting to the

hypothesis J ∈ A. So the first statement is valid.

Uniqueness. Suppose I =
l⋂

i=1
Pi =

t⋂
j=1

Qj be irredundant intersections. For each j = 1, . . . , t,
l⋂

i=1
Pi ⊆

Qj . Then ∃ i0 ∈ {1, . . . , l} s.t. Pi0 ⊆ Qj . Indeed, suppose the contrary, then ∃ fi ∈ Pi\Qj for each

i = 1, . . . , l. Thus, f1f2 · · · fl ∈
l⋂

i=1
Pi ⊆ Qj , which yields a contradiction. Similarly, ∃ j0 ∈ {1, . . . , t}

s.t. Qj0 ⊆ Pi0 ⊆ Qj . Since I =
t⋂

j=1
Qj is irredundant, j0 = j and Pi0 = Qj . Thus, l = t and ∃ a

permutation σ ∈ Sl s.t. Pi = Qσ(i).

Corollary 2.2.5. Every proper radical differential ideal I ⫋ K{y1, . . . , yn} (char(K) = 0) can be

written as a finite intersection of prime differential ideals. If I =
l⋂

i=1
Pi is irredundant, Pi are called

prime components of I.

1(y(n))2 ∈ In, (y
(n−1))2 ∈ In ⇒ y(n−1)y(n+1) ∈ In, (y

(n−2))2 ∈ In ⇒ 2y(n+2)y(n−2) + 8y(n+1)y(n−1) + 6(y(n))2 ∈
In ⇒ y(n−2)y(n+2) ∈ In, . . . , yy

(2n) ∈ In.
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Example: I = {y′2 − 4y} ⊆ Q{y}. Then I = {y′2 − 4y, y′′ − 2} ∩ {y} (Chapter 3).

We end this chapter by giving an example illustrating a differential ideal is not finitely generated
as a differential ideal.
Example 2: The radical differential ideal {xy} ⊆ K{x, y} is not finitely generated as a differential
ideal. In other words, there doesn’t exist finitely many differential polynomials f1, . . . , fs ∈ K{x, y}
s.t. {xy} = [f1, . . . , fs].

Proof. Let I = {xy} ⊆ K{x, y} and J = (x(i)y(j) : i, j ∈ N) ⊆ K{x, y}.
Claim A: I = J .
Indeed, J ⊆ I, for xy ∈ I Lemma 1.3.1

=⇒ ∀ i, j ∈ N, x(i)y(j) ∈ I.
It is easy to show that J is a differential ideal and the following fact:

f /∈ J ⇔ f has a term not involving any y(j) (or x(i)).

The fact implies that J ⊆ {xy} is a radical differential ideal and I = J follows.

Now suppose the contrary, i.e., ∃ f1, . . . , fs ∈ K{x, y} s.t. I = [f1, . . . , fs]. Since I = J , then
∃ q ∈ N s.t. fi ∈ [x(i)y(j) : 0 ≤ i, j ≤ q]. Hence, I = [x(i)y(j) : 0 ≤ i, j ≤ q]. In particular,
x(q+1)y(q+1) ∈ [x(i)y(j) : 0 ≤ i, j ≤ q], we obtain (y(q+1))2 ∈ [y(i)y(j) : i, j ≤ q] (∗) by substituting
x = y in the expression of x(q+1)y(q+1) in terms of x(i)y(j)(i, j ≤ q).

Use the notation in Example 1, (y(q+1))2 ∈ V2q+2 and V2q+2 = SpanK(δ2(V2q), (y
(q+1))2).

But, [y(i)y(j) : i, j ≤ q] ∩ V2q+2 = SpanK(δ2(V2q)).
Indeed, V2q ⊆ [(y(i))2 : i ≤ q] ⊆ [y(i)y(j) : i, j ≤ q]⇒ δ2(V2q) ⊆ [y(i)y(j) : i, j ≤ q] ∩ V2q+2.
On the other hand, ∀ f ∈ [y(i)y(j) : i, j ≤ q] ∩ V2q+2,

f =
∑

0≤i,j≤q

cijδ
2q+2−i−j(y(i)y(j))

=
∑

0≤i,j≤q

cijδ
2
(
δ2q−i−j(y(i)y(j))

)
∈ SpanK(δ2(V2q)).

Since (y(q+1))2 /∈ SpanK(δ2(V2q)), (y
(q+1))2 /∈ [y(i)y(j) : i, j ≤ q], contradicts to (∗).
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Chapter 3

The Differential Algebra-Geometry
Dictionary

Let (K, δ) be a differential field of characteristic 0. Let K{Y } = K{y1, . . . , yn} be the differential
polynomial ring in the differential variables y1, . . . , yn over K. Any Σ ⊆ K{Y } defines a system of
algebraic differential equations. The main objective of differential algebra is to study the solutions
of such system (i.e., differential varieties, our main protagonists).

3.1 Ideal-Variety correspondence in differential algebra

Recall the definitions of differentially closed fields and differential varieties:
For f ∈ K{Y } = K{y1, . . . , yn} and η = (η1, . . . , ηn) ⊆ Ln with (L, δ) ⊇ (K, δ), η is a differential

zero of f if f(η) = 0. Here, f(η) means replacing δkyi by δkηi in f(y1, . . . , yn).
(E, δ) is differentially closed if for all F ∈ E{y1, . . . , yn}, whenever ∃ (L, δ) ⊇ (E, δ) and η ∈ Ln

s.t. F (η) = 0, there exists ξ ∈ En s.t. F (ξ) = 0.
Let (K, δ) ⊆ (E, δ). (E, δ) is called a differential closure of (K, δ) if

1) (E, δ) is differentially closed, and

2) for every differentially closed field (M, δ) ⊇ (K, δ), there is a differential embedding φ : E ↪→M
with φ |K= idK .

Throughout this chapter, (E, δ) ⊇ (K, δ) is a fixed differentially closed field. By a differential
affine space, we mean any En for n ∈ N. An element (η1, . . . , ηn) ∈ En is called a point.

A set V ⊆ En is called a δ-variety over K if ∃Σ ⊆ K{Y } s.t.

V = V(Σ) ≜ {η ∈ En | f(η) = 0, ∀ f ∈ Σ}.

Let Π = {δ-varieties in En over K}. Then Π satisfies:

1) ∅, En ∈ Π;

2) If V1, V2 ∈ Π, V1 ∪ V2 ∈ Π;

3) Any intersection of elements of Π is an element of Π.

23
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So Π is a topology on En, called the Kolchin topology, as compared to the Zariski topology
in algebraic geometry. A δ-variety is called a Kolchin-closed set. For a set S ⊆ En, the smallest
δ-variety (with respect to inclusion) containing S is called the Kolchin closure of S, denoted by SKol.

For a subset S ⊆ En, define I(S) = {f ∈ K{y1, . . . , yn} | ∀ η ∈ S, f(η) = 0}. It is easy to show
that I(S) is a radical δ-ideal in K{Y }, called the vanishing δ-ideal of S.

Proposition 3.1.1. 1) If S1 ⊆ S2 ⊆ En, then I(S2) ⊆ I(S1).

2) If P1 ⊆ P2 ⊆ K{Y }, then V(P2) ⊆ V(P1).

3) If S ⊆ En, then V = V(I(S)) is the Kolchin closure of S and I(V ) = I(S).

Proof. 1) and 2) are straightforward.
To show 3): Let SKol = V(Σ) for Σ ⊆ K{Y }. For every f ∈ Σ, f |S≡ 0 ⇒ f ∈ I(S). So Σ ⊆ I(S).
Thus, V = V(I(S)) ⊆ V(Σ) = SKol. Hence, SKol = V .

S ⊆ V ⇒ I(V ) ⊆ I(S). If ∃ f ∈ I(S)\I(V ), then ∃ η ∈ V s.t. f(η) ̸= 0. Set Σ1 = I(V ) ∪ {f}.
Then Σ1 ⊆ I(S) ⇒ V(Σ1) ⊇ V(I(S)) = V . Since η ∈ V, η ∈ V(Σ1). So f(η) = 0, which yields a
contradiction.

Now we have two maps between Π and the set of radical δ-ideals in K{Y } = K{y1, . . . , yn}:

I : {δ-varieties in En over K} −→ { radical δ-ideals in K{Y }}
V I(V )

and
V : { radical δ-ideals in K{Y }} −→ {δ-varieties in En over K}

J V(J)

Corollary 3.1.2. For every δ-variety V , V(I(V )) = V . Hence I is injective and V is surjective.

Proof. By Proposition 3.1.1, V = V Kol = V(I(V )).

A point η ∈ Ln (L ⊇ K a differential extension field) is a generic zero of a differential ideal I if
I = I(η). Clearly, a differential ideal I is prime ⇔ I has a generic zero.
“⇒”: If I is prime, set L = Frac(K{y1, . . . , yn}/I). Then (ȳ1, . . . , ȳn) ∈ Ln is a generic zero of I.

Next section, we will give the differential Nullstellensatz theorem (both the weak and strong
analogues of the Hilbert’s Nullstellensatz theorem). Continuing Corollary 3.1.2, we will show I and
V are inclusion-reversing bijective maps. For the content in this section, all the results are valid
even if E is not differentially closed. But for the differential Nullstellensatz theorem to be valid, E
is required to be differentially closed.

3.2 Differential Nullstellensatz

The Hilbert Nullstellensatz in algebraic geometry has two forms:
Theorem (Weak Nullstellensatz)

Let F ⊆ K[x1, . . . , xn]. Then V(F ) = {η ∈ K̄n | F (η) = 0} = ∅ ⇔ 1 ∈ (F ).
Theorem (Strong Nullstellensatz)

Let F ⊆ K[x1, . . . , xn] and f ∈ K[x1, . . . , xn]. If f |V(F )≡ 0, then f ∈
√

(F ).
We have differential versions of Hilbert Nullstellensatz in differential algebra.
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Theorem 3.2.1 (Weak Differential Nullstellensatz). Let F ⊆ K{y1, . . . , yn} and (E, δ) ⊇ (K, δ) a
differentially closed field. Then V(F ) = {η ∈ En | F (η) = 0} = ∅ ⇔ 1 ∈ [F ].

Proof. It suffices to show that if [F ] ̸= K{y1, . . . , yn}, then ∃ η ∈ En s.t. f(η) = 0 for all f ∈ F .
Since 1 /∈ [F ],

√
[F ] ̸= K{y1, . . . , yn}. Let

√
[F ] = ∩li=1Pi be the minimal prime decomposition. Let

M = Frac(K{y1, . . . , yn}/P1). Then M is a differential extension field of K and (ȳ1, . . . , ȳn) ∈ Mn

is a generic zero of P1. F ⊆ P1 implies that (ȳ1, . . . , ȳn) is a differential zero of F . Since E ⊇ K is
differentially closed, there exists η = (η1, . . . , ηn) ∈ En s.t. ∀ f ∈ F, f(η) = 0.

Theorem 3.2.2 (Differential Nullstellensatz).

• Let F ⊆ K{y1, . . . , yn} and f ∈ K{y1, . . . , yn}. If f vanishes at every differential zero of F in
En, then f ∈ {F}.

• I(V(F )) = {F}.

Proof. (Use Rabinowitsch’s trick for the case f ̸= 0)
Intruduce a new differential indeterminate t and consider the new differential polynomial set

F, 1−ft inK{y1, . . . , yn, t}. Since f vanishes at every differential zero inEn of F , V(F, 1−ft) ⊆ En+1

is the emptyset. By the weak differential Nullstellensatz, 1 ∈ [F, 1− ft] ⊆ K{y1, . . . , yn, t}. Hence,
∃Ai, Bi ∈ K{y1, . . . , yn, t} and s ∈ N s.t.

1 =
s∑

i=0
AiF

(i) +
s∑

j=0
Bj(1− ft)(j).

Since f ̸= 0, replace t by 1
f at both sides, then we have

1 =
s∑

i=0
Ai(y1, . . . , yn,

1
f )F

(i).

There exists m ∈ N s.t. fm
s∑

i=0
Ai(y1, . . . , yn,

1
f ) ∈ K{y1, . . . , yn} and we have fm ∈ [F ].

Remark: As above, we give an abstract proof for the weak differential Nullstellensatz following
Ritt. The first constructive proof was given by Seidenberg using elimination theory.

The Differential Nullstellensatz and Corollary 3.1.2 show that the two maps I and V are bijections.

Theorem 3.2.3. The maps V → I(V ) and I → V(I) define inclusion reversing bijections between
the set of all differential varieties in En over K and the set of all radical differential ideals in
K{y1, . . . , yn}.

Definition 3.2.4. Let V ⊆ En be a differential variety. Then the differential ring

K{V } := K{y1, . . . , yn}/I(V )

is called the differential coordinate ring of V .1

W ⊆ En is called a differential subvariety of V if W ⊆ V and W is a differential variety in En.2

Theorem 3.2.3 can be generalized to arbitrary differential varieties in place of An = En.

Corollary 3.2.5. Let V ⊆ En be a differential variety. The map
1Since for any a ∈ V , f̄1 = f̄2 implies f1(a) = f2(a). So K{V } could be regarded as a ring of differential functions

on V .
2Assume all differential varieties are over K unless indicated.
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W 7−→ {f ∈ K{V } | f(a) = 0 ∀ a ∈W}

is an inclusion reversing bijection between the set of differential subvarieties of V and the set of
radical differential ideals in K{V }.

Remark: (Effective Hilbert Nullstellensatz and Effective differential Nullstellensatz)
Effective Nullstellensatz
Let P1, . . . , Pm ∈ C[x1, . . . , xn] = C[X] have degree at most D ≥ 1. If P1, . . . , Pm have no

common zero in Cn, then there are polynomials A1, . . . , Am ∈ C[X] of degree bounded by B(D,n,m)
s.t. 1 = A1P1 + · · ·+AmPm.3

• deg(Ai) ≤ 2(2D)2
n−1 (Hermann, Math. Ann., 1926)

• lower bound: deg(Ai) ≥ Dn −Dn−1 (Masser-Philippon)

• deg(Ai) ≤ µnDµ + µD for µ = min{m,n}
≤ 2n2Dµ (Brownawell, Ann. Math., 1987)

• deg(AiPi) ≤


d1d2 · · · dm if m ≤ n
d1 · · · dn−1dm if m > n > 1

d1 + dm − 1 if m > n = 1

(Kollar, J. Amer. Math. Soc., 1988)

Here deg(Pi) = di and assume d1 ≥ d2 ≥ · · · ≥ dm > 2.

• deg(AiPi) ≤

{
N ′(d1, . . . , dm;n) if m ≤ n
2N ′(d1, . . . , dm;n)− 1 if m > n

(Jelonek, Invent. Math., 2005. New Proof)

Subsequent work on sharper bounds or new proofs.

Effective Differential Nullstellensatz
If F1, . . . , Fk ∈ K{y1, . . . , yn} have no common differential zeros in En, then ∃ s ∈ N and Aij ∈

K{y1, . . . , yn} s.t. 1 =
k∑

i=1

s∑
j=0

AijF
(j)
i .

To give a bound for s in terms of the order h, degree d and # derivation operators m and #
differential variables n.4

Focus on the ordinary differential case:

• s ≤ A(q,max{n, h, d}).5 (Golubitsky, J. Algebra, 2009)

• K: constant differential field. s ≤ (n(h+ 1)d)2
c(n(e+1))3 for a universal constant c > 0.

(D’ Alfonso, J. complexity, 2014)

• s ≤ (nTd)2
O(n3(T+1)3) (Gustavson, Adv. Math., 2016)

3If such a degree bound B(D,n,m) for Ai exists, to decide whether P1 = · · · = Pm = 0 has a zero is reduced to
solve linear equations.

4If such a computable bound is given, to decide whether V(F1, . . . , Fk) = ∅ or not is reduced to an algebraic
problem and then results about effective Hilbert Nullstellensatz could be applied here.

5A(·, ·) Ackermann function


A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n))
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• s ≤

{
Dnh−p+12p+1 if D ≥ 2

p+ 1 if D = 1.
Here p = dim((F )) in K[y

(j)
i : j ≤ h].

(Ovchinnikov, Arxiv:1610.04022v6, 2018)

Example: F = {y21, y1 − y22, . . . , yn−1 − y2n, 1− y′n},V(F ) = ∅.
1 /∈ (F, . . . , F (2n−1)) and 1 ∈ (F, . . . , F (2n)). So s ≥ 2n.

3.3 Irreducible decomposition of differential varieties

A differential variety V ⊆ En is said to be irreducible if V is not the union of two proper differential
subvarieties.

Lemma 3.3.1. A differential variety V is irreducible ⇔ I(V ) ⊆ K{y1, . . . , yn} is prime.

Proof. “⇒” For any f, g ∈ K{Y }, fg ∈ I(V ), we have

V = V(I(V ), fg) = V(I(V ), f) ∪ V(I(V ), g).

V is irreducible ⇒ V(I(V ), f) = V or V(I(V ), g) = V . Equivalently, f ∈ I(V ), or g ∈ I(V ). So I(V )
is prime.

“⇐” If V = V1 ∪ V2, then I(V ) = I(V1) ∩ I(V2). Since I(V ) is prime, I(V1) ⊆ I(V ) or I(V2) ⊆
I(V ), for otherwise, ∃ fi ∈ I(Vi)\I(V ), i = 1, 2, but f1f2 ∈ I(V1) ∩ I(V2) = I(V ), which yields a
contradiction. If I(V1) ⊆ I(V ), then V = V1; and in the other case, V = V2.

Theorem 3.3.2. Any differential variety V is a finite union of irreducible differential varieties,

i.e., V =
l⋃

i=1
Vi with Vi irreducible differential subvariety of V . Call V =

l⋃
i=1

Vi an irreducible

decomposition of V . If V =
l⋃

i=1
Vi is an irredundant/minimal irreducible decomposition (in the sense

Vi ̸⊆
⋃
j ̸=i

Vj ,∀ i), then the set {V1, . . . , Vl} is unique for V .

Proof. By Theorem 2.2.4 and Corollary 2.2.5,

I(V ) =
l⋂

j=1
Pj for Pj prime differential ideals.

=⇒ V = V(I(V )) = V(
l⋂

j=1
Pj) =

l⋃
j=1

V(Pj) is an irreducible decomposition of V .

Uniqueness: If V =
l⋃

i=1
Vi and V =

m⋃
j=1

Wj are two irredundant irreducible decomposition of V ,

then we have two irredundant prime decomposition for I(V ), i.e.,

I(V ) =
l⋂

i=1
I(Vi) and I(V ) =

m⋂
j=1

I(Wj).

By Theorem 2.2.4, l = m and ∃σ ∈ Sl s.t. I(Vi) = I(Wσ(i)). Hence, Vi =Wσ(i) for i = 1, . . . , l.

Remark: Each irreducible differential variety Vi in the irredundant irreducible decomposition V =
l⋃

i=1
Vi is called an irreducible component of V . These V1, . . . , Vl are called the maximal irreducible

differential subvarieties contained in V .
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Components of a single Algebraic differential equation
Let A ∈ K{y1, . . . , yn}\K be algebraically irreducible (not the product of two differential poly-

nomials in K{Y }\K). We are going to study the prime decomposition of the radical differential
ideal {A}.

Example: Let A = y′′2 − y ∈ K{y}. Then A′ = 2y′′y(3) − y′, A′′ = 2y′′y(4) + 2(y(3))2 − y′′,
A(3) = 2y′′y(5) + 6y(3)y(4) − y(3).
⇒ 2y(3)A(3) +A′′ − 6y(4)A′′ = y′′(4y(3)y(5) − 12(y(4))2 + 8y(4) − 1).

So {A} = {A, y′′} ∩ {A, 4y(3)y(5) − 12(y(4))2 + 8y(4) − 1}.

Select an arbitrary differential ranking R on Θ(Y ) and take the separant SA under R. Let
ld(A) = y

(h)
p for some p ∈ {1, . . . , n} and h ∈ N. The order of A in yi is defined to be ord(A, yi) =

max{k | deg(A, y(k)i ) ≥ 1}. The order of A is defined to be ordA = max
i
{ord(A, yi)}. Let P1 = {A} :

SA = {f ∈ K{Y } | SAf ∈ {A}}.

Lemma 3.3.3. 1) P1 is prime.

2) For a differential polynomial F ∈ K{Y }, F ∈ P1 ⇔ δ-rem(F,A) = 0. In particular, if F ∈ P1

and ord(F, yp) ≤ ord(A, yp) = h, then F is divisible by A.

Proof. 1) Let fg ∈ P1 with f, g ∈ K{Y }. Let f1 and g1 be the partial remainder of f and g w.r.t.
A. Then ∃ a, b ∈ N s.t.

Sa
Af ≡ f1 mod [A], Sb

Ag ≡ g1 mod [A].

⇒ Sa+b+1
A fg ≡ SAf1g1 mod [A].

Since fg ∈ P1 = {A} : SA, SAf1g1 ∈ {A}. Thus, ∃ l, q ∈ N s.t.

(SAf1g1)
l =MA+M1A

′ +M2A
′′ + · · ·+MqA

(q). (∗)

If q = 0, ... When q > 0.
Recall that for k ≥ 1, A(k) = SAy

(h+k)
p + Tk with Tk free of y(h+k)

p . Note that SA, f1, g1 are free from
y
(h+1)
p , . . . , y

(h+q)
p . Now replace y(h+k)

p by − Tk

SA
for k = 1, . . . , q at both sides of (∗), then we have

(SAf1g1)
l =M ·A where M =M |

y
(h+k)
p =− TA

SA

.

Clearing fractions, we have St
A(f1g1)

l = N · A. Since A is irreducible and A ∤ SA, A | f1g1 and thus
A | f1 or A | g1. Suppose that A | f1. Then Sa

Af ∈ {A} and it follows that f ∈ {A} : SA = P1 and
P1 is prime.

2) If δ-rem(F,A) = 0, then F ∈ sat(A) = [A] : S∞
A ( had better mention A is a characteristic set

of [A] : S∞
A and [A] : S∞

A is prime) ⊆ {A} : SA = P1.
Conversely, let F ∈ P1, then SAF ∈ {A}. Let R be the partial remainder of F w.r.t. A, then

Sm
AF ≡ R mod [A]. SAF ∈ {A} ⇒ SAR ∈ {A} ⇒ ∃ l ∈ N s.t. (SAR)

l =MA+M1A
′ + · · ·+MtA

(t),
By the procedure in 1), we can show R is divisible by A. So δ-rem(F,A) = 0.

Proposition 3.3.4. {A} = P1 ∩ {A, SA}.

Proof. Clearly, {A} ⊆ P1 ∩ {A, SA}. Suppose f ∈ P1 ∩ {A, SA}, it suffices to show f ∈ {A}. Since
f ∈ {A, SA}, ∃ l ∈ N, f l = T1 + T2 for T1 ∈ [A], T2 ∈ [SA]. f ∈ P1 ⇒ SAf ∈ {A} ⇒ δk(SA)f ∈ {A}.
So f l+1 ∈ {A} and f ∈ {A} follows.
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Let {A, SA} = Q1 ∩ · · · ∩ Qt be the minimal prime decomposition of {A, SA}. Then {A} =
P1 ∩Q1 ∩Q1 ∩ · · · ∩Qt. Suppressing those Qi with P1 ⊆ Qi and denote the left Qi’s by P2, . . . , Pr.
Then {A} = P1 ∩ · · · ∩ Pr is the minimal prime decomposition of {A}.

Claim For each separant S of A under any arbitrary ranking, S /∈ P1 = {A} : SA and S ∈
P2, . . . , Pr.

Proof. S /∈ P1 follows from Lemma 3.3.3 and the fact A ∤ S. Since {A, SA} ⊆ P2, . . . , Pr, SA ∈
P1, . . . , Pr. S ∈ P2, . . . , Pr follows from the fact that {P1, . . . , Pr} are the unique irreducible compo-
nents of {A}.

Remark: A is the differential characteristic set of P1 = {A} : SA = {A} : S = sat(A) (S is the
separant of A under any other ranking). P1 or V(P1) is called the general component of A = 0.
P2, . . . , Pr are called singular components of A = 0.

Example: n = 1, A = (y′)2 − 4y, SA = 2y′. {A, SA} = {(y′)2 − 4y, 2y′} = [y]. A′ = 2y′(y′′ − 2), so
y′′−2 ∈ {A} : SA, y′′−2 /∈ [y]. {A} : SA ⊇ [(y′)2−4y, y′′−2] = ((y′)2−4y, y′′−2, y′′′, · · · ). Then I =
((y′)2− 4y, y′′− 2, y′′′, · · · ) is prime for K{y}/I ∼= K[y, y′]/(A). Thus, {A} : SA = [(y′)2− 4y, y′′− 2]
is the general component of A and [y] is the singular component of A. To solve (y′)2 − 4y over
K = (R(x), d

dx):
dy
dx = ±2√y ⇒ dy

2
√
y = ±dx ⇒ √y = ±x + c. So y = (x + c)2 or y = 0. (c an

arbitrary constant).

Definition: A differential zero η ∈ En of A is called a nonsingular zero if ∃ a separant S of A s.t.
S(η) ̸= 0. And if S(η) = 0 for all separants of A, η is called a singular solution/zero of A = 0.

Nonsingular zeros belong to the general component of A, but the general component of A may
contain singular solutions of A.

Example: A = (y′)2 − y3 ∈ K{y}. SA = 2y′. Since V(A, SA) = {0}, η = 0 is the only singular
solution of A = 0. A′ = 2y′y′′ − 3y2y′ = 2y′(y′′ − 3

2y
2) ⇒ {A} = {A, y′′ − 3

2y
2} ∩ [y] = {A, y′′ −

3
2y

2} = sat(A). Thus, η = 0 is embedded in the general component of A(= 0). (Geometrically,
K = (C(t), d

dt), ηc =
1

4(t+c)2
is a one-parameter family of nonsingular solutions (c arbitrary constant).

limc→∞ηc = 0.)

Ritt’s problem GivenA ∈ K{y1, . . . , yn} irreducible withA(0, . . . , 0) = 0, decide whether (0, . . . , 0)
(Still open!) ∈ V(sat(A))?

With deep results not covered in our course (Low power theorem), we have Ritt’s component theorem.

Theorem 3.3.5. Let A ∈ K{y1, . . . , yn} be a differential polynomial not in K. Let {A} = P1 ∩
· · · ∩ Pr be the minimal prime decomposition of {A}, then ∃Bi ∈ K{y1, . . . , yn} irreducible s.t.
Pi = sat(Bi), i = 1, . . . , r. In particular, if A is irreducible, then ∃ i0 s.t. Bi0 = aA (a ∈ K∗)
and for i ̸= i0, A involves a proper derivative of the leader of each Bi w.r.t. any ranking and
ord(Bi) < ord(A).
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Chapter 4

Extensions of differential fields

Let (K, δ) be a differential field of characteristic 0. Let x be an indeterminate over K. Then δ can

be extended to a derivation δ0 on K[x] s.t. δ0(x) = 0 given by δ0(
l∑

i=0
rix

i) =
l∑

i=0
δ(ri)x

i. There is

also a derivation on K[x] s.t. d
dx(K) = 0 and d

dx(x) = 1 given by d
dx(

l∑
i=0

rix
i) =

l∑
i=1

irix
i−1.

Any derivation δ1 on K[x] which extends δ is given by

δ1 = δ0 + δ1(x)
d
dx .

Conversely, by defining δ1(x) = p(x) ∈ K[x], δ1 = δ0 + p(x) d
dx is a derivation on K[x] extending δ.

Proof. First suppose δ1 is a derivation on K[x] extending δ. Then ∀ f =
r∑

i=0
rix

i ∈ K[x], δ1(f) =

r∑
i=0

δ(ri)x
i +

r∑
i=1

irix
i−1δ1(x) = δ0(f) + δ1(x)

d
dx(f). So δ1 = δ0 + δ1(x)

d
dx . Now let δ1 : K[x]→ K[x]

be defined by δ1(f) = δ0(f) + δ1(x)
d
dx(f). Then ∀ a ∈ K, δ1(a) = δ0(a) + δ1(x)

d
dx(a) = δ(a);

∀ f, g ∈ K[x], δ1(f + g) = δ0(f + g) + δ1(x)
d

dx
(f + g) = δ1(f) + δ1(g),

δ1(fg) = δ0(fg) + δ1(x)
d

dx
(fg) = δ1(f)g + fδ1(g).

Thus, δ1 is a derivation which extends δ.

Theorem 4.0.1. Let K ⊆ L be fields of characteristic 0. Then any derivation on K could be
extended to a derivation on L. This extension is unique if and only if L is algebraic over K.

Proof. Let δ be a derivation on K. First suppose L = K(α). If α is transcendental over K, then
there exists a derivation δ0 on K[α] s.t. δ0 |K= δK and δ0(α) = 0. So now extends to a derivation
on L = K(α). If α is algebraic over K, let F (x) be the minimal polynomial of α over K. Let
g(x) ∈ K[x] be a polynomial to be determined. δ extends to a derivation δ0 on K[x] by setting
δ0(x) = 0. So δ1 = δ0 + g(x) d

dx is a derivation on K[x]. We want to choose g(x) s.t. δ1 maps the
ideal F ·K[x] to itself. The condition for this is that δ1(F )(α) = 0, or δ0(F )(α) + g(α)dFdx (α) = 0.
Since dF

dx (α) ̸= 0, g(α) = − δ0(F )(α)
dF
dx

(α)
. K(α) = K[α] implies that we can find g(x) ∈ K[x] with

desired property. Choose g(x) ∈ K[x] s.t. δ1 maps F ·K[x] to itself. Now δ1 induces a map δ̄1 on
K[x]/F ·K[x] by δ̄1(A(x) + F ·K[x]) = δ1(A(x)) + F ·K[x] and this δ̄1 is the desired derivation on
K(α) = K[α]. (δ̄1(α) = g(α) = −δ0(F )(α)/F ′(α).)

31
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For the general case, let E = {(K1, δ1) | K ⊆ K1 ⊆ L and δ1 |K= δK}. Then E is nonempty.
Let (K1, δ1) ⊆ (K2, δ2) ⊆ · · · ⊆ (Kn, δn) ⊆ · · · be an ascending chain in E. Then (

⋃
i
Ki, δ̄) with

∀ a ∈ Ki, δ̄(a) = δi(a) is in E. By Zorn’s lemma, ∃ a maximal element (M, δM ) in E. Clearly,
M = L.

Uniqueness If L is not algebraic over K, then ∃α ∈ L transcendental over K. There will be
more than one derivation on K[α] which extends δ on K. If L is algebraic over K, for each α ∈ L,

let F (x) =
d∑

i=0
rix

i ∈ K[x] be the minimal polynomial of α over K. Let D be the derivation on L

which extends δ on K. F (α) = 0 ⇒ 0 = D(F (α)) = D(
d∑

i=0
riα

i) =
d∑

i=0
δ(ri)α

i + (
d∑

i=1
iriα

i−1)D(α)

⇒ D(α) = −(
d∑

i=0
δ(ri)α

i)/(
d∑

i=1
iriα

i−1) which is unique.

Corollary 4.0.2. If K ⊆ L are fields of characteristic 0 and δ be a derivation on L s.t. δ(K) ⊆ K.
If α ∈ L is algebraic over K, then δ(α) ∈ K(α). In particular, if α ∈ L is algebraic over a constant
subfield of L, then α is a constant.

With the language of differential polynomials, Definition 2.0.1 can be restated as:

Definition 4.0.3. Let K ⊆ L be differential field extensions and α ∈ L. If ∃ p(y) ∈ K{y}\{0} s.t.
p(α) = 0, then α is said to be differential algebraic over K. Otherwise, α is called differentially transcendental
over K. Let α1, . . . , αn ∈ K, we call α1, . . . , αn differentially algebraically dependent over K if
∃F (y1, . . . , yn) ∈ K{y1, . . . , yn}∗ s.t. F (α1, . . . , αn) = 0. Otherwise, they are said to be differen-
tially transcendental over K.

Lemma 4.0.4. Let K ⊆ L be differential fields of characteristic 0 and α ∈ L. Then α is differential
algebraic over K ⇔ tr.degK⟨α⟩/K <∞.

Proof. “⇒” Suppose α is differential algebraic over K. Let A(y) ∈ K{y} be a characteristic set
of I(α) ⊆ K{y}.1 Assume ord(A) = n. Claim: tr.degK⟨α⟩/K = n. Clearly, α, α′, . . . , α(n−1) are
algebraically independent over K and α(n) is algebraic over K(α, α′, . . . , α(n−1)). And A(α) = 0 ⇒
SA(α) ·α(n+1)+TA(α) = 0, where TA(α) ∈ K(α, . . . , α(n))⇒ α(n+1) = − TA(α)

SA(α)
∈ K(α, α′, . . . , α(n)).

⇒ ∀ k ∈ N, α(n+k) ∈ K(α, α′, . . . , α(n)). So K⟨α⟩ = K(α, α′, . . . , α(n)) and tr.degK⟨α⟩/K = n.
“⇐” n = tr.degK⟨α⟩/K <∞ impies that α, α′, α′′, . . . , α(n) are algebraically dependent over K.

So α is differential algebraic over K.

Remark:

1) If α is differential algebraic over K and f(y) ̸= 0 is a differential polynomial of minimal order
which vanishes at α, then tr.degK⟨α⟩/K = ord(f).

2) The result “⇒” is false in the partial differential case (K, {δ1, . . . , δm}), where tr.degK⟨α⟩/K
might be infinity but the differential type2 of K⟨α⟩ is ≤ m− 1.

Example: K = (R(x), d
dx), L = (K⟨ex, sin(x)⟩, d

dx). Since d
dx(e

x) = ex and ( d
dx)

2(sin(x)) =
− sin(x), ex and sin(x) are differentially algebraic overK with tr.degK⟨ex⟩/K = 1, tr.degK⟨sin(x)⟩/K =
1.

1A(y) is of minimal order and minimal degree under the desired order.
2Differential type is the degree of differential dimension polynomial of I(α)
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We say L ⊆ K is differential algebraic over K, if each element a ∈ L is differential algebraic
over K. Note that every differential field extension with finite transcendence degree is differential
algebraic over K. But the converse doesn’t hold.

Lemma 4.0.5. Let L ⊇ K be a differential field extension and a, b ∈ L which are differential
algebraic over K. Then a+b, ab, δ(a) and a−1 (a ̸= 0) are differential algebraic over K. In particular,
a differential field extension generated by differential algebraic elements is differential algebraic over
K and the set of all elements in L which are differential algebraic over K is a differential algebraic
differential field extension of K.

Proof. Since tr.degK⟨a⟩/K <∞ and tr.degK⟨b⟩/K <∞, we have tr.degK⟨a, b⟩/K = tr.degK⟨a⟩/K+
tr.degK⟨a⟩⟨b⟩/K⟨a⟩ <∞.

Lemma 4.0.6. Let K ⊆ L ⊆ M be differential fields. Then M is differential algebraic over K ⇔
M is differential algebraic over L and L is differential algebraic over K.

Proof. “⇒” Valid by definition.
“⇐” For any a ∈ M , a is differential algebraic over L, so ∃ p(y) ∈ L{y}\{0} s.t. p(a) =

0. Denote the coefficient set of p(y) to be {b1, . . . , bt} ⊆ L. Then tr.degK⟨b1, . . . , bt, a⟩/K =
tr.degK⟨b1, . . . , bt⟩/K + tr.degK⟨b1, . . . , bt, a⟩/K⟨b1, . . . , bt⟩ <∞. Thus, tr.degK⟨a⟩/K <∞ and a
is differential algebraic over K.

4.1 Differential primitive theorem

It is a well-known theorem of algebra that a finite algebraic extension of a field K of characteristic
0 has a primitive element ω:

K(a1, . . . , an) = K(ω).

In this section, we treat analogous problem for arbitrary differential field of characteristic 0.
Note that Q⟨π, e⟩ is a finitely generated differential extension field of Q (δ(π) = δ(e) = 0).

Clearly, Q⟨π, e⟩ ≠ Q⟨ω⟩ for any ω ∈ Q⟨π, e⟩. So to derive an analog of primitive element theorem in
differential algebra, we need some restrictions. For the ordinary differential fields, the mild condition
is that (K, δ) contains a non-constant element (i.e., ∃ η ∈ K s.t. η′ ̸= 0).

We need two lemmas for preparation to state the main theorem. Throughout this section, (K, δ)
is a fixed differential field of characteristic 0 containing a non-constant.

A set of elements η1, . . . , ηs of K is called linearly dependent if there exists a relation

c1η1 + · · ·+ csηs = 0,

where the ci’s are constant elements in K, not all zero.
The wronskian determinant of η1, . . . , ηs is defined as

wr(η1, . . . , ηs) =

∣∣∣∣∣∣∣∣
η1 · · · ηs
η′1 · · · η′s
· · · · · · · · ·
η
(s−1)
1 · · · η

(s−1)
s

∣∣∣∣∣∣∣∣ .
Lemma 4.1.1. Let η1, . . . , ηs be elements in K. Then η1, . . . , ηs are linearly independent⇔ wr(η1, . . . , ηs) =
0, i.e., ∣∣∣∣∣∣∣∣

η1 · · · ηs
η′1 · · · η′s
· · · · · · · · ·
η
(s−1)
1 · · · η

(s−1)
s

∣∣∣∣∣∣∣∣ = 0 (∗)
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Proof. “⇒” Suppose η1, . . . , ηs are linearly dependent. Then ∃ c1, . . . , cs, constants of K, not all zero
s.t. c1η1 + · · ·+ csηs = 0. Differentiate the relation s− 1 times, we get a system of linear equations
for c’s: 

c1η1 + · · ·+ csηs = 0

c1η
′
1 + · · ·+ csη

′
s = 0

· · · · · ·

c1η
(s−1)
1 + · · ·+ csη

(s−1)
s = 0

has a nonzero solution. So (∗) holds.
“⇐” Suppose we have (∗). We now show η1, . . . , ηs are linearly dependent by induction on s. If

s = 1, η1 = 0 ⇒ η1 is linearly dependent. Suppose it is valid for the case ≤ s − 1 and we treat for
the case s. By (∗), ∃ c1, . . . , cs ∈ K, not all zero s.t.

c1η
(j)
1 + · · ·+ csη

(j)
s = 0 (∗∗) for j = 0, . . . , s− 1.

If wr(η1, . . . , ηs−1) =

∣∣∣∣∣∣∣∣
η1 · · · ηs−1

η′1 · · · η′s−1

· · · · · · · · ·
η
(s−2)
1 · · · η

(s−2)
s−1

∣∣∣∣∣∣∣∣ = 0, by the induction hypothesis, η1, . . . , ηs−1 are linearly

dependent, so η1, . . . , ηs are linearly dependent too.
So it suffices to consider the case wr(η1, . . . , ηs−1) ̸= 0. Then in this case cs ̸= 0. By dividing cs

on both sides when necessary, we can take cs = 1. For j = 0, . . . , s − 2, differentiate (∗∗) and then
subtract the equation (∗∗) corresponding to j + 1, then we have

c′1η
(j)
1 + · · ·+ c′s−1η

(j)
s−1 = 0 for j = 0, . . . , s− 2.

Since wr(η1, . . . , ηs−1) ̸= 0, we have ci’= 0 for i = 1, . . . , s − 1. Thus, η1, . . . , ηs are linearly
dependent.

Lemma 4.1.2. If G is a nonzero differential polynomial in K{y1, . . . , yn}, there exist elements
η1, . . . , ηn in K such that G(η1, . . . , ηn) ̸= 0.

Proof. It suffices to treat a differential polynomial in a single indeterminate y (the case n = 1). Take
a nonconstant ξ ∈ K. Fix any r ∈ N.

Claim: If G ∈ K{y} is a nonzero differential polynomial of order ≤ r, there exists

η = c0 + c1ξ + · · ·+ crξ
r

where all the ci’s are constants in K, satisfying G(η) ̸= 0.
Suppose the claim is false and letH be a nonzero differential polynomial of lowest rank which vanishes
for every element c0+ c1ξ+ · · ·+ crξr (ci are constants from K). Let ord(H, y) = s. Then 0 < s ≤ r.
Introduce algebraic indeterminates z0, . . . , zr with zi’= 0. Then H = H(z0 + z1ξ + · · · + zrξ

r) ∈
K[z0, . . . , zr] is the zero polynomial. Take the partial derivative of H w.r.t. z0, . . . , zs, then

∂H

∂y
= 0

∂H

∂y
ξ +

∂H

∂y′
ξ′ + · · ·+ ∂H

∂y(s)
ξ(s) = 0

· · · · · ·
∂H

∂y
ξs +

∂H

∂y′
(ξs)′ + · · ·+ ∂H

∂y(s)
(ξs)(s) = 0

.
( ∂H
∂y(j)

=
∂H

∂y(j)
(z0 + · · ·+ zrξ

r)
)



4.1. DIFFERENTIAL PRIMITIVE THEOREM 35

So 
1 0 · · · 0

ξ ξ′ · · · ξ(s)

· · · · · · · · · · · ·
ξs (ξs)′ · · · (ξs)(s)




∂H
∂y
∂H
∂y′

...
∂H
∂y(s)

 = 0

Since ∂H
∂y(s)

is of lower rank than H, ∂H
∂y(s)

̸= 0. Thus,∣∣∣∣∣∣∣∣
ξ′ (ξ2)′ · · · (ξs)′

ξ′′ (ξ2)′′ · · · (ξs)′′

· · · · · · · · · · · ·
ξ(s) (ξ2)(s) · · · (ξs)(s)

∣∣∣∣∣∣∣∣ = wr(ξ′, (ξ2)′, . . . , (ξs)′) = 0.

So ∃ c1, . . . , cs constants of K, not all zero s.t. c1ξ′ + c2(ξ
2)′ + · · ·+ cs(ξ

s)′ = 0. Then c1ξ + c2ξ
2 +

· · · + csξ
s = c0 with c0 a constant. Thus ξ is algebraic over the constant field of K. By Corollary

4.0.2, ξ′ = 0, a contradiction to the hypothesis ξ′ ̸= 0. So we can find some η = c0 + c1ξ+ · · ·+ crξr
with ci constants s.t. G(η) ̸= 0.

Remark:

1) Lemma 4.1.2 is false without the restriction that (K, δ) contains at least a nonconstant element.
A non-example: K = Q, G(y) = y′.

2) For the partial differential case (K, {δ1, . . . , δm}), the condition that “∃ ξ ∈ K s.t. ξ′ = 0”
should be replaced by

“ ∃ ξ1, . . . , ξm ∈ K s.t.

∣∣∣∣∣∣∣∣
δ1(ξ1) · · · δ1(ξm)
δ2(ξ1) · · · δ2(ξm)
· · · · · · · · ·

δm(ξ1) · · · δm(ξm)

∣∣∣∣∣∣∣∣ ̸= 0. ”

The lemma is called “ non-vanishing of differential polynomials ”.

3) This is the differential analog of the following result in Algebra:

“ LetK be an infinite field. Then for any nonzero polynomial f ∈ K[y1, . . . , yn], ∃ (a1, . . . , an) ∈
Kn s.t. f(a1, . . . , an) ̸= 0. ”

Theorem 4.1.3 (Differential Primitive Element Theorem). Let (K, δ) be a non-constant differential
field of characteristic 0 (i.e., ∃ b ∈ K, δ(b) ̸= 0). Assume K⟨α1, . . . , αn⟩ is differential algebraic over
K. Then ∃ ξ ∈ K⟨α1, . . . , αn⟩ s.t. K⟨α1, . . . , αn⟩ = K⟨ξ⟩.3

Proof. It suffices to show that if γ, β are differential algebraic over K, then ∃ e ∈ K s.t.

K⟨γ, β⟩ = K⟨γ + eβ⟩.

Introduce a new differential indeterminate t over K⟨γ, β⟩ and consider γ + tβ ∈ K⟨t⟩⟨γ, β⟩. By
Lemma 4.0.5, γ + tβ is differential algebraic over K⟨t⟩. Consider the prime differential ideal I(γ +
tβ) ⊆ K⟨t⟩{y} and suppose A(y) ∈ K⟨t⟩{y} is a characteristic set of I(γ + tβ). Then A(γ + tβ) = 0

3In other words, every finitely generated differential algebraic extension field of (K, δ) is generated by a single
element.
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but SA(γ + tβ) ̸= 0. Assume ord(A) = s. Clearing denominators when necessary, we can take
A ∈ K{t, y} and write A(t, y) for convenience.

Now we have A(t, γ + tβ) = 0 but ∂A
∂y(s)

(t, γ + tβ) ̸= 0. Note that

∂((γ + tβ)(k))

∂t(s)
=

{
0, k < s

β, k = s
for k ≤ s.

Take the partial derivative of A(t, γ + tβ) = 0 w.r.t. t(s), we have
∂A
∂t(s)

(t, γ + tβ) + β · ∂A
∂y(s)

(t, γ + tβ) = 0.

Since ∂A
∂y(s)

(t, γ + tβ) ̸= 0 belongs to K⟨γ, β⟩{t}, by Lemma 4.1.2, ∃ e ∈ K s.t. ∂A
∂y(s)

(e, γ + eβ) ̸= 0.

Thus, β = −
∂A

∂t(s)
(e,γ+eβ)

∂A

∂y(s)
(e,γ+eβ)

∈ K⟨γ + eβ⟩ and K⟨γ, β⟩ = K⟨γ + eβ⟩ follows.

Corollary 4.1.4. Let (K, δ) be a nonconstant differential field. Let K⟨η1, . . . , ηn⟩ be a differential
algebraic extension field of K. Then ∃ e1, . . . , en ∈ K s.t. K⟨η1, . . . , ηn⟩ = K⟨e1η1 + · · ·+ enηn⟩.

Remark: G. Pogudin proved the differential primitive theorem for the case{
1○K ′ = {0};
2○K⟨η1, . . . , ηn⟩ has a nonconstant

.

(“The primitive element theorem for differential fields with zero derivation on the ground field. J.
Pure Appl. Algebra, 4035-4041, 2015.”)

4.2 Differential transcendence bases

Let R be a differential ring. Elements α1, . . . , αn in a differential over-ring S of R are called
differentially algebraically dependent overR if there exists a nonzeroG ∈ R{y1, . . . , yn} s.t. G(α1, . . . , αn) =
0. Otherwise, α1, . . . , αn are called differentially (δ-) algebraically independent over R. A subset of
S is called δ-algebraically independent over R if all its subsets are δ-algebraically independent over
R.

Definition 4.2.1. Let K ⊆ L be an extension of differential fields and A ⊆ L. An element b ∈ L
is called δ-algebraically dependent on A (over K) if b is δ-algebraic over K⟨A⟩. A subset B of L is
called δ-algebraically dependent on A (over K) if every element of B is δ-algebraically dependent on
A.4

Lemma 4.2.2. Let K ⊆ L be an extension of δ-fields, A ⊆ L and b ∈ L. Then b is δ-algebraically
dependent on A if and only if ∃ f ∈ K{y1, . . . , yn, z} and a1, . . . , an ∈ A such that f(a1, . . . , an, z) ̸= 0
and f(a1, . . . , an, b) = 0.

Proof. Assume b is δ-algebraically dependent on A. Then by definition, b is δ-algebraically over
K⟨A⟩, so ∃ a nonzero g ∈ K⟨A⟩{z} s.t. g(b) = 0. Let {a1, . . . , an} ⊆ A be the subset appearing
effectively in the coefficients of g. After multiplying g by appropriate element from K{a1, . . . , an},
we can assume g ∈ K{a1, . . . , an, z}. Thus, this g satisfies the desired property. The converse is
obvious.

4Note: Since K is our base differential field, for simplicity, we usually omit “over K”.
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Lemma 4.2.3. Let K ⊆ L be an extension of δ-fields and A be a subset of L which is δ-algebraically
independent over K. Let b ∈ L. If A, b are δ-algebraically dependent over K, then b is δ-algebraic
over K⟨A⟩.

Proof. SinceA, b are δ-algebraically dependent overK, then ∃ 0 ̸= f ∈ K{y1, . . . , yn, z} s.t. f(a1, . . . , an, b) =
0 for some a1, . . . , an ∈ A. Since a1, . . . , an are δ-algebraically independent overK, f(a1, . . . , an, z) ̸=
0. Thus, b is δ-algebraic over K⟨A⟩.

Lemma 4.2.4 (Transitivity of δ-algebraic dependence). Let (K, δ) ⊆ (L, δ) and A,B,C ⊆ L. If A
is δ-algebraically dependent on B and B is δ-algebraically dependent on C, then A is δ-algebraically
dependent on C.

Proof. By the assumption, K⟨B⟩⟨A⟩ is δ-algebraic overK⟨B⟩ andK⟨C⟩⟨B⟩ is δ-algebraic overK⟨C⟩.
By Lemma 4.0.6, K⟨C,B,A⟩ is δ-algebraic over K⟨C⟩. Thus, each element of A is δ-algebraic over
K⟨C⟩.

Lemma 4.2.5 (The exchange property). Let a1, . . . , an, b be elements from a δ-extension field of
K. If b is δ-algebraically dependent on a1, . . . , an but not on a1, . . . , an−1, then an is δ-algebraically
dependent on a1, . . . , an−1, b.

Proof. Since b is δ-algebraically dependent on a1, . . . , an, by Lemma 4.2.2, there exists g ∈ K{y1, . . . , yn, z}\{0}
s.t. g(a1, . . . , an, z) ̸= 0 and g(a1, . . . , an, b) = 0. Regard g as a univariate δ-polynomial in yn with
coefficients from K{y1, . . . , yn−1, z}, and let g1, . . . , gn ∈ K{y1, . . . , yn−1, z} be all the nonzero coef-
ficients. Then ∃ i s.t. gi(a1, . . . , an−1, z) ̸= 0, for otherwise, g(a1, . . . , an−1, an, z) = 0. Since b is not
δ-algebraically dependent on a1, . . . , an−1, gi(a1, . . . , an−1, b) ̸= 0. So g(a1, . . . , an−1, yn, b) ̸= 0 and
consequently, an is δ-algebraically dependent on a1, . . . , an−1, b.

Proposition 4.2.6. Let K ⊆ L be an extension of δ-fields and A = {a1, . . . , an}, B = {b1, . . . , bm} be
two subsets of L. Assume that 1) A is δ-algebraically independent over K and 2) A is δ-algebraically
dependent on B. Then n ≤ m.

Proof. Let r = |A ∩ B|. If r = n, then we are done. Now assume r < n and write B =
a1, . . . , ar, br+1, . . . , bm. Since ar+1 is δ-algebraically dependent on a1, . . . , ar, br+1, . . . , bm but not
on a1, . . . , ar, there will be a bj (r + 1 ≤ j ≤ m) s.t. ar+1 is δ-algebraically dependent on
a1, . . . , ar, br+1, . . . , bj but not δ-algebraically dependent on a1, . . . , ar, br+1, . . . , bj−1. Bt the ex-
change property (Lemma 4.2.5), bj is δ-algebraically dependent on a1, . . . , ar, br+1, . . . , bj−1, ar+1,
and thus δ-algebraically dependent on B1 := (B\{bj}) ∪ {ar+1}. Therefore, B is δ-algebraically
dependent on B1. Since A is δ-algebraically dependent on B, by Lemma 4.2.4, A is δ-algebraically
dependent on B1. Note that |B1| = m and |A ∩ B1| = r + 1. Continuing in this way, we will
eventually arrive at r = n, i.e., A ⊆ Bn−r. So n ≤ m.

Definition 4.2.7. Let (K, δ) ⊆ (L, δ). A subset A of L is called a δ-transcendence basis of L over
K if 1) A is δ-algebraically independent over K and 2) L is δ-algebraic over K⟨A⟩.

By the size of a set, we mean its cardinality if the set is finite, and ∞ otherwise.

Theorem 4.2.8. Let (K, δ) ⊆ (L, δ). Then every δ-generating set of L ⊇ K contains a δ-
transcendence basis of L over K. In particular, there exists a δ-transcendence basis of L over K.
Moreover, any two δ-transcendence bases of L over K are of the same size.

Proof. Let M be a δ-generating set of L over K, i.e., L = K⟨M⟩. Let

N = {S ⊆M | S is δ-algebraically independent over K}.
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Then ∅ ∈ N ̸= ∅. Clearly, the union of every chain of elements in N is again in N . So by Zorn’s
lemma, there exists a maximal element A in N .

Claim: A is a δ-transcendence basis of L over K.
We now show the claim. For any a ∈ M , a,A are δ-algebraically dependent over K. By Lemma
4.2.3, a is δ-algebraic over K⟨A⟩, so M is δ-algebraic over K⟨A⟩. And by Lemma 4.0.5, L = K⟨M⟩
is δ-algebraic over K⟨A⟩. Thus, A ⊆M is a δ-transcendence basis of L over K.

Now suppose A and B are both δ-transcendence bases of L over K. By symmetry, it suffices
to show that the size of A ≥ the size of B. If A is an infinite set, it is automatically valid. So
we may assume A is finite. B is already a finite set. Let B1 be a finite subset of B. Since A
is a δ-transcendence basis of L over K, each element of B1 is δ-algebraic over K⟨A⟩, and B1 is
δ-algebraically dependent on A. By Proposition 4.2.6, |B1| ≤ |A|. Thus, |B| ≤ |A|.

Corollary 4.2.9. Let (K, δ) ⊆ (L, δ) and L = K⟨M⟩. If A is a maximal δ-algebraically independent
subset of M , then A is a δ-transcendence basis of L over K.

Theorem 4.2.8 guarantees we can make the following definition:

Definition 4.2.10. Let (K, δ) ⊆ (L, δ). The size of a δ-transcendence basis of L over K is called
the δ-transcendence degree of L over K. It is denoted by δ-tr.deg(L/K).

Corollary 4.2.11. Let (K, δ) ⊆ (L, δ) and L = K⟨a1, . . . , an⟩. Then δ-tr.deg(L/K) ≤ n, and the
δ-transcendence degree of a finitely δ-generated δ-field extension is finite.

Proof. It is clear from Corollary 4.2.9.

Corollary 4.2.12. Let (K, δ) ⊆ (L, δ). If L contains n δ-independent elements, then n ≤ δ-tr.deg(L/K).
In fact, δ-tr.deg(L/K) = sup{n ∈ N | ∃ a1, . . . , an ∈ L which are δ-algebraically independent over K}.

Proof. Let a1, . . . , an ∈ L be δ-algebraically independent over K. We can enlarge {a1, . . . , an} to
a δ-generating set B of L over K. Then {a1, . . . , an} is contained in a maximal δ-algebraically
independent subset A′ ⊆ B. By Corollary 4.2.9, A′ is a δ-transcendence basis of L over K. Thus,
n ≤ δ-tr.deg(L/K) and also

sup{n ∈ N | ∃ a1, . . . , an ∈ L which are δ-algebraically independent over K} ≤ δ-tr.deg(L/K).

The reverse estimate is clear, for a δ-transcendence basis is δ-algebraically independent over K.

Theorem 4.2.13. Let K ⊆ L ⊆M be δ-fields. Then

δ-tr.deg(M/K) = δ-tr.deg(M/L) + δ-tr.deg(L/K).

(Here, ∞+ a(∞) =∞).

Proof. Let A be a transcendence basis of L over K and B a δ-transcendence basis of M over L.
Claim: A ∪B is a δ-transcendence basis of M over K.

First, since B is δ-algebraically independent over K⟨A⟩ (⊆ L), A∪B is δ-algebraically independent
over K. It remains to show M is δ-algebraic over K⟨A,B⟩. Since each element of M is δ-algebraic
over L⟨B⟩ and each element of L is δ-algebraic over K⟨A⟩, M is δ-algebraic over K⟨A,B⟩. Thus,
A ∪ B is a δ-transcendence basis of M over K and A ∩ B = ∅ implies that δ-tr.deg(M/K) =
δ-tr.deg(M/L) + δ-tr.deg(L/K).

Adjoining the differential primitive element theorem, we have
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Proposition 4.2.14. Let L = K⟨a1, . . . , an⟩ and suppose K contains a nonconstant element in the
case d = δ-tr.deg(L/K) = 0. Then L is δ-generated by no more than d+ 1 elements.

Proof. In the case d = 0, this is the differential primitive element theorem. Assume d > 0. Then
∃ {ξ1, . . . , ξd} ⊆ {a1, . . . , an} s.t. ξ1, . . . , ξd is a δ-transcendence basis of L over K, and denote the
others by ξd+1, . . . , ξn. Then L = K⟨ξ1, . . . , ξd⟩⟨ξd+1, . . . , ξn⟩ = K⟨ξ1, . . . , ξd⟩⟨ad+1ξd+1+ · · ·+anξn⟩.
(d > 0⇒ K⟨ξ1, . . . , ξd⟩′ ̸= {0}).

4.3 Applications to differential varieties

Let (K, δ) be a δ-field of characteristic 0 and V ⊆ An an irreducible δ-variety over K.5 The
coordinate δ-ring of V is K{V } ≜ K{y1, . . . , yn}/I(V ). Here K{V } is a δ-domain and we consider
the δ-quotient field K⟨V ⟩ = Frac(K{V }). Naturally, K⟨V ⟩ is a δ-field extension of K and called the
δ-function field of V . Clearly, (ȳ1, . . . , ȳn) ∈ K⟨V ⟩n is a generic point of V . Given any other generic
point (a1, . . . , an) of V , we have K⟨V ⟩ = K⟨ȳ1, . . . , ȳn⟩ ∼= K⟨a1, . . . , an⟩ with ȳi ↔ ai. In particular,
δ-tr.degK⟨ȳ1, . . . , ȳn⟩/K = δ-tr.degK⟨a1, . . . , an⟩/K.

In order to measure the “size” of a differential variety (i.e., the solution set of algebraic differential
equations), we introduce the notion of differential dimension:

Definition 4.3.1. Let V ⊆ An be an irreducible δ-variety over K. The δ-dimension of V is defined
as the δ-transcendence degree of the δ-function field of V over K. That is,

δ-dim(V ) = δ-tr.degK⟨V ⟩/K.

For an arbitrary V with irreducible components V1, . . . , Vm,

δ-dim(V ) = maxi δ-dim(Vi).

Another equivalent definition of differential dimension in the language of differential ideals is
given by Ritt:

Definition 4.3.2. Let P ⊆ K{y1, . . . , yn} be a prime δ-ideal. A δ-variable set U ⊆ {y1, . . . , yn}
is called a δ-independent set modulo P if P ∩ K{U} = {0}. A parametric set of P is a maximal
δ-independent set modulo P . The δ-dimension of P (or V(P )) is defined to be the cardinal number
of its parametric set.

Exercise: Please show different parametric sets of a prime δ-ideal have the same cardinal number.
And show Definition 4.3.1 and Definition 4.3.2 are equivalent for prime δ-ideals or irreducible δ-
varieties.

Lemma 4.3.3. Let V be a δ-variety and W ⊆ V a δ-subvariety. Then δ-dim(W ) ≤ δ-dim(V ).

Proof. First assume W and V are both irreducible. W ⊆ V implies that I(W ) ⊇ I(V ). Suppose
δ-dim(W ) = d and {y1, . . . , yd} is a parametric set of I(W ). Clearly, I(V ) ∩ {y1, . . . , yd} = {0} and
{y1, . . . , yd} is a δ-independent set modulo I(V ) which could be extended to a parametric set of I(V ).
Thus, δ-dim(V ) = δ-dim(I(V )) ≥ d.

Now let V and W be arbitrary. Let W1 be an irreducible component of W with δ-dim(W ) =
δ-dim(W1). Then W1 is contained in an irreducible component V1 of V . By the above,

δ-dim(W ) = δ-dim(W1) ≤ δ-dim(V1) ≤ δ-dim(V ).
5Here An = K̄n with (K̄, δ) a δ-closed field containing (K, δ).
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Exercise: Let W ⊆ V be two irreducible δ-varieties with δ-dim(W ) = δ-dim(V ). Is W = V ?

It is true in the algebraic case but not valid in differential algebra:
Non-example: Let W = V(y′) ⊆ A1 and V = V(y′′) ⊆ A1. Then W ⊆ V and δ-dim(W ) =

δ-dim(V ). But W ̸= V .

This example shows that the differential dimension is not a fine enough measure of size, thus we
need a more discriminating measure: the differential dimension polynomial of an irreducible δ-variety
V or I(V ).

The idea of Hilbert polynomial for homogeneous ideals suggests that it might be a way to
consider the truncated coordinate ring by order: Let P ⊆ K{y1, . . . , yn} be a prime δ-ideal. Denote
K[y

[t]
1 , . . . , y

[t]
n ] = K[y

(j)
i : j ≤ t, i = 1, . . . , n] and let Pt = P ∩K[y

[t]
1 , . . . , y

[t]
n ]. Then Pt is a prime

algebraic ideal with dimension dim(Pt). Kolchin showed that for t ≫ 0, dim(Pt) is a numerical
polynomial. We state it with the language of (δ-)field extensions.

Theorem 4.3.4 (Kolchin). Let P ⊆ K{y1, . . . , yn} be a prime δ-ideal with a generic point η =
(η1, . . . , ηn). Then there exists a numerical polynomial ωP (t) ∈ R[t] with the following properties:

1) For sufficiently large t ∈ N, dim(Pt) = ωP (t);

2) ωP (t) = d(t+ 1) + s with d = δ-dim(V(P )) and some s ∈ N;

3) (Computation of ωP (t)) Let A = A1, . . . , Al be a characteristic set of P w.r.t. some orderly
ranking of Θ(Y ) = {δkyj : k ∈ N, j = 1, . . . , n} and suppose ld(Ai) = y

(si)
σ(i). Then ωP (t) =

(n− l)(t+ 1) +
l∑

i=1
si.

4) ωP (t) = n(t+ 1)⇔ P = [0] (i.e., V(P ) = An); ωP (t) = 0⇔ V(P ) is a finite set.

Proof. Denote η[t] = (η1, . . . , ηn, η
′
1, . . . , η

′
n, . . . , η

(t)
1 , . . . , η

(t)
n ). Clearly, η[t] is a generic point of Pt ⊆

K[y
[t]
1 , . . . , y

[t]
n ]. So dim(Pt) = tr.degK(η[t])/K. For each A ∈ A, A(η) = 0 and IA(η) ̸= 0 imply

that uA(η) is algebraic over K(η
(k)
j : y

(k)
j < uA, j = 1, . . . , n). Repeated differentiation shows

that if v is any derivative of uA, then v(η) is algebraic over K(η
(k)
j : y

(k)
j < v, j = 1, . . . , n).

Let M denote the set of all derivatives y(k)j that are not derivatives of any uA (A ∈ A) and let

M(t) =M ∩ {y(k)j : k ≤ t, j = 1, . . . , n}. So, for t ≥ max{s1, . . . , sl}, we have that

K(η[t]) is algebraic over K
(
(v(η))v∈M(t)

)
.6 (∗)

Thus, dim(Pt) = tr.degK(η[t])/K = Card(M(t)). Since

M(t) = {yσ(i), y′σ(i), . . . , y
(si−1)
σ(i) : i = 1, . . . , l︸ ︷︷ ︸

derivatives of leading variables

} ∪ {yj , y′j , . . . , y
(t)
j : j ̸= σ(1), . . . , σ(l)︸ ︷︷ ︸

parametric variable parts

},

6Arrange {y(k)
j : k ≤ t, j = 1, . . . , n}\M(t) in increasing order: uA1 < · · · . From the above, uA1 is algebraic over

K
(
(v(η))v∈M(t)

)
and (∗) can be shown by induction.
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Card(M(t)) = (n − l)(t + 1) +
l∑

i=1
si. So dim(Pt) = (n − l)(t + 1) +

l∑
i=1

si for t ≥ max{s1, . . . , sl}.

Denote ωP (t) = (n− l)(t+ 1) +
l∑

i=1
si. This finishes the proof of 1) and 3).

To show 4), ωP (t) = n(t + 1) ⇔ M(t) = {y(k)j : k ≤ t, j = 1, . . . , n} ⇔ P = [0]; And
ωP (t) = 0⇔M(t) = ∅ ⇔ ld(A) = {y1, . . . , yn} ⇔ V(P ) is a finite set.

It suffices to show δ-dim(P ) = n − l to complete the proof of 2). Assume d = δ-dim(P ) =
δ-tr.degK⟨η⟩/K. W.L.O.G, let η1, . . . , ηd be a differential transcendence basis of K⟨η⟩ over K. Thus,

ωP (t) = tr.degK(η
[t]
1 , . . . , η

[t]
n )/K = (n − l)(t + 1) +

l∑
i=1

si ≥ tr.degK(η
[t]
1 , . . . , η

[t]
d )/K = d(t + 1),

and n − l ≥ d follows. Conversely, let {z1, . . . , zn−l} = {y1, . . . , yn}\{yσ(1), . . . , yσ(l)}. Since any
nonzero polynomial in K{z1, . . . , zn−l} is reduced w.r.t. A, we have K{z1, . . . , zn−l} ∩ P = {0}. So
{z1, . . . , zn−l} is an independent set modulo P and can be enlarged to be a parametric set of P .
Thus, n− l ≤ δ-dim(P ) = d. Hence, n− l = d = δ-dim(P ).

Definition 4.3.5. Let V ⊆ An be an irreducible differential variety over K and P = I(V ). The
above ωP (t) is defined as the differential dimension polynomial of P or V , also denoted by ωV (t).

Remark:

1) The δ-dimension polynomial of an irreducible δ-variety V ⊆ An is of the form

ωV (t) = d(t+ 1) + s, where d = δ-dim(V ).

The number s is defined as the order of V , denoted by ord(V ). The order is the rigorous defini-
tion for the notion “the number of arbitrary constants” of the solution of algebraic differential
equations.

2) In the partial differential case, (K, {δ1, . . . , δm}), we have the similar notion of differential
dimension polynomial. There, ωV (t) = am

(
t+m
m

)
+ am−1

(
t+m−1
m−1

)
+ · · ·+ a1(t+ 1) + a0, where

am = δ-dim(V ).

Example: Let W = V(y′) ⊆ A1 and V = V(y′′) ⊆ A1. W ⫋ V but δ-dim(W ) = δ-dim(V ). Note
that ωW (t) = 1 and ωV (t) = 2.

The next proposition shows that δ-dimension polynomial is a finer measure than δ-dimension.

Proposition 4.3.6. Let W,V ⊆ An be irreducible δ-varieties and W ⫋ V . Then ωW (t) < ωV (t).

Proof. Let P1 = I(W ) and P2 = I(V ). Then W ⫋ V implies that P1 ⫌ P2. So for t sufficiently
large, P1 ∩K[y

[t]
1 , . . . , y

[t]
n ] ⫌ P2 ∩K[y

[t]
1 , . . . , y

[t]
n ], consequently,

ωW (t) = dimP1 ∩K[y
[t]
1 , . . . , y

[t]
n ]

< dimP2 ∩K[y
[t]
1 , . . . , y

[t]
n ]

= ωV (t) for t≫ 0.

We end this section by showing that an irreducible δ-variety is differentially birationally equiva-
lent to an irreducible δ-variety of codimension 1.
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We now identify elements of the differential coordinate ring K{V } = K{y1, . . . , yn}/I(V ) with
K-valued functions on V and call them differential polynomial functions on V . And each element of
K⟨V ⟩ = Frac(K{V }) can be identified as a differential rational function on V . If η ∈ V , f

g ∈ K⟨V ⟩
is defined at η if g(η) ̸= 0 (f, g ∈ K{V }).

Definition 4.3.7. Let V ⊆ An and W ⊆ Am be irreducible δ-varieties over K. A differential rational
map φ : V · · · → W is a family (f1, . . . , fm) ∈ K⟨V ⟩m such that φ(η) = (f1(η), . . . , fm(η)) ∈ W
whenever the coordinate functions f1, . . . , fm are defined at η. φ is called dominant if the Kolchin
closure of φ(V ) is W (or equivalently, φ maps a generic point of V to that of W ).

And, φ is called a differential birational map if φ is dominant and there is a dominant differential
rational map ψ :W · · · → V , called the generic inverse of φ such that

• if φ is defined at η and ψ is defined at φ(η), then ψ(φ(η)) = η;

• if ψ is defined at ξ and φ is defined at ψ(ξ), then φ(ψ(ξ)) = ξ.

In this case, we also call V and W are δ-birationally equivalent.

Theorem 4.3.8. Suppose (K, δ) contains a nonconstant element. Let P ⊆ K{u1, . . . , ud, y1, . . . , yn−d}
be a prime δ-ideal with a parametric set {u1, . . . , ud}. Then ∃ a1, . . . , an−d ∈ K s.t. [P, ω − a1y1 −
· · · − an−dyn−d] ⊆ K{u1, . . . , ud, y1, . . . , yn−d, ω} has a characteristic set of the form

X(u1, . . . , ud, ω)

I1(u1, . . . , ud, ω)y1 − T1(u1, . . . , ud, ω)
...

In−d(u1, . . . , ud, ω)yn−d − Tn−d(u1, . . . , ud, ω)

w.r.t. the elimination ranking u1 < · · · < ud < ω < y1 < · · · < yn−d.

Proof. Let η = (ū1, . . . , ūd, ȳ1, . . . , ȳn−d) be a generic point of P . Introduce n − d new differential
indeterminates λ1, . . . , λn−d over K⟨η⟩. Let

J = [P, ω − λ1y1 − · · · − λn−dyn−d] ⊆ K{u1, . . . , ud, y1, . . . , yn−d, λ1, . . . , λn−d, ω}.

Then J is a prime δ-ideal with a generic point

ξ = (ū1, . . . , ūd, ȳ1, . . . , ȳn−d, λ1, . . . , λn−d, λ1ȳ1 + · · ·+ λn−dȳn−d).

Since δ-dim(P ) = d, δ-tr.degK⟨η⟩/K = d and

δ-tr.degK⟨ξ⟩/K = δ-tr.degK⟨η⟩/K + δ-tr.degK⟨η⟩⟨λ1, . . . , λn−d⟩/K⟨η⟩
= d+ n− d = n.

So Jλ = J ∩ K{u1, . . . , ud, λ1, . . . , λn−d, ω} ≠ [0] and {u1, . . . , ud, λ1, . . . , λn−d} is a parametric
set of Jλ. Let {R(u1, . . . , ud, λ1, . . . , λn−d, ω)} be a characteristic set of Jλ w.r.t. the elimina-
tion ranking u1 < · · · < ud < λ1 < · · · < λn−d < ω. Denote s = ord(R,ω) ≥ 0. Since
R(ū1, . . . , ūd, λ1, . . . , λn−d, λ1ȳ1+· · ·+λn−dȳn−d) = 0, for j = 1, . . . , n−d, take the partial derivative
of this identity w.r.t. λ(s)j on both sides, then we obtain

∂R

∂λ
(s)
j

+
∂R

∂ω(s)
· ȳj = 0, (4.1)
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where ∂R

∂λ
(s)
j

and ∂R
∂ω(s) are obtained from ∂R

∂λ
(s)
j

and ∂R
∂ω(s) by substituting (u1, . . . , ud, λ1, . . . , λn−d, ω) =

(ū1, . . . , ūd, λ1, . . . , λn−d, λ1ȳ1 + · · · + λn−dȳn−d). Note that ∂R
∂ω(s) /∈ Jλ, so ∂R

∂ω(s) ̸= 0. As ∂R
∂ω(s) ∈

K{η}{λ1, . . . , λn−d} is nonzero, by the non-vanishing theorem of nonzero polynomials, ∃ a1 . . . , an−d ∈
K s.t. ∂R

∂ω(s) |λi=ai ∈ K{η}\{0}. Let I(u1, . . . , ud, ω) = ∂R
∂ω(s) |λi=ai ∈ K{u1, . . . , ud, ω}. Then

I(ū1, . . . , ūd, a1ȳ1 + · · ·+ an−dȳn−d) =
∂R

∂ω(s) |λi=ai ̸= 0.
Let Ja = [P, ω − a1y1 − · · · − an−dyn−d] ⊆ K{u1, . . . , ud, y1, . . . , yn−d, ω}. Then Ja is a prime

δ-ideal with a generic point

ξa = (ū1, . . . , ūd, ȳ1, . . . , ȳn−d, a1ȳ1 + · · ·+ an−dȳn−d).

Clearly, I(u1, . . . , ud, ω) /∈ Ja. Let Tj(u1, . . . , ud, ω) = − ∂R

∂λ
(s)
j

|λi=ai . By (4.1),

I(u1, . . . , ud, ω)yj − Tj(u1, . . . , ud, ω) ∈ Ja.

Since δ-tr.degK⟨ξa⟩/K = d, Ja ∩K{u1, . . . , ud, ω} ̸= [0] with a parametric set {u1, . . . , ud}. So its
characteristic set consists of a single δ-polynomial. Let X(u1, . . . , ud, ω) be an irreducible polynomial
constituting a characteristic set of Ja ∩ K{u1, . . . , ud, ω} w.r.t the elimination ranking R : u1 <
· · · < ud < ω. For each j, take the differential remainder of Iyj − Tj w.r.t X (under R). Since
I /∈ Ja∩K{u1, . . . , ud, ω}, δ-rem(Iyj−Tj , X) is of the form Ijyj−T 0

j where Ij , T 0
j ∈ K{u1, . . . , ud, ω},

Ij /∈ Ja.
Claim: X(u1, . . . , ud, ω), I1y1 − T 0

1 , . . . , In−dyn−d − T 0
n−d is a characteristic set of Ja w.r.t. the

elimination ranking u1 < · · · < ud < ω < y1 < · · · < yn−d. Indeed, for all f ∈ Ja, first perform
the Ritt-Kolchin reduction process for f w.r.t. I1y1 − T 0

1 , . . . , In−dyn−d − T 0
n−d, then we get f0 ∈

Ja ∩K{u1, . . . , ud, ω}, thus f0 could be reduced to 0 by X. Thus, we have proved the theorem.

Remark:

1) The above irreducible X(u1, . . . , ud, ω) is called a differential resolvent of P or V(P ).

2) With the obtained a1, . . . , an−d, we have K⟨ū1, . . . , ūd, ȳ1, . . . , ȳn−d⟩ = K⟨ū1, . . . , ūd, a1ȳ1 +
· · ·+ an−dȳn−d⟩. (Proposition 4.2.14) In the case d = 0, this is the primitive theorem.

Corollary 4.3.9. Let (K, δ) contain a nonconstant element. Let V ⊆ An be an irreducible δ-variety.
Then V is δ-birationally equivalent to the general component of an irreducible δ-polynomial (i.e., an
irreducible δ-variety of codimension 1).

Proof. Suppose δ-dim(V ) = d and {u1, . . . , ud} is a parametric set of P = I(V ) ⊆ K{u1, . . . , ud, y1, . . . , yn−d}.
By Theorem 4.3.8, ∃ a1 . . . , an−d ∈ K s.t. Ja = [P, ω−a1y1−· · ·−an−dyn−d] ⊆ K{u1, . . . , ud, y1, . . . , yn−d, ω}
has a characteristic set of the form

X(u1, . . . , ud, ω)

I1(u1, . . . , ud, ω)y1 − T1(u1, . . . , ud, ω)
...

In−d(u1, . . . , ud, ω)yn−d − Tn−d(u1, . . . , ud, ω)

w.r.t. the elimination ranking u1 < · · · < ud < ω < y1 < · · · < yn−d, where X is irreducible (∗).
Let W = V(sat(X)) ⊆ Ad+1 be the general component of X.

• Define φ : V · · · →W by φ(u1, . . . , ud, y1, . . . , yn−d) = (u1, . . . , ud, a1y1 + · · ·+ an−dyn−d)
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• Define ψ :W · · · → V by ψ(u1, . . . , ud, ω) = (u1, . . . , ud,
T1(u1,...,ud,ω)
I1(u1,...,ud,ω)

, . . . ,
Tn−d(u1,...,ud,ω)
In−d(u1,...,ud,ω)

).

Let ξ = (ū1, . . . , ūd, ȳ1, . . . , ȳn−d) be a generic point of V and η = (ū1, . . . , ūd, ω̄) be a generic point
of W . It is easy to show that both φ and ψ are dominant, and (ψ ◦ φ)(ξ) = ξ, (φ ◦ ψ)(η) = η from
(∗). So V and W are δ-birationally equivalent.

Example: Let K = (Q(t), d
dt) and V = V(y′1, y′2) ⊆ A2(K̄). Introduce new δ-indeterminates

ω, λ1, λ2 and consider J = [y′1, y
′
2, ω − λ1y1 − λ2y2] ⊆ K{ω, λ1, λ2, y1, y2}. To eliminate y1, y2 in

order to get X(ω) ∈ K{ω}, we have

R(ω, λ1, λ2) =

∣∣∣∣∣∣
ω −λ1 −λ2
ω′ −λ′1 −λ′2
ω′′ −λ′′1 −λ′′2

∣∣∣∣∣∣ = (λ1λ
′
2 − λ′1λ2)ω′′ − (λ1λ

′′
2 − λ′′1λ2)ω′ + (λ′1λ

′′
2 − λ′′1λ′2)ω.

SRy1 +
∂R
∂λ′′

1
= SRy1 + (λ2ω

′ − λ′2ω), SRy2 +
∂R
∂λ′′

2
= SRy2 − (λ1ω

′ − λ′1ω) with SR = λ1λ
′
2 − λ′1λ2.

Choose λ1 = 1, λ2 = t, then SR = 1 ̸= 0. So

X(ω) = ω′′, y1 + (tω′ − ω), y2 − ω′

is a characteristic set of [y′1, y′2, ω − y1 − ty2] (⊆ K{ω, y1, y2}) w.r.t. the elimination ranking ω <
y1 < y2. Let W = V(ω′′) ⊆ A1. Then V and W are δ-birationally equivalent. Indeed, let

φ : V · · · → W and ψ : W · · · → V
(y1, y2) 7−→ y1 + ty2 ω 7−→ (ω − tω′, ω′).

Then, ψ ◦ φ(y1, y2) = ψ(y1 + ty2) = (y1 + ty2 − t(y1 + ty2)
′, (y1 + ty2)

′) = (y1, y2) and φ ◦ ψ(ω) =
ω − tω′ + tω′ = ω. Note that X(ω) is a δ-resolvent of V , and if c1, c2 are algebraic indeterminates
with c′1 = c′2 = 0, then Q(t)⟨c1, c2⟩ = Q(t)⟨c1 + tc2⟩.



Chapter 5

Symbolic-integration for elementary
functions

5.1 Symbolic integration of elementary functions

Let (R,D) be a differential ring and CR = {r ∈ R | D(r) = 0} be the ring of constants of (R,D).
We have the following facts:

1) Let 1 be the identity in R, then D(1) = 0.

2) For any n ∈ N , a ∈ R, D(an) = nan−1D(a).

3) If b is invertible in R, then D(ab ) =
D(a)b−aD(b)

b2
.

4) If ai is invertible in R, then for any mi ∈ Z, D(a
m1
1 ···ams

s )

a
m1
1 ···ams

s
=

s∑
i=1

mi
D(ai)
ai

.

5) Let Der(R) = {D : R → R | D is a derivation on R}. Then Der(R) is a R-module, i.e.,
r1D1 + r2D2 ∈ Der(R) for all r1, r2 ∈ R and D1,D2 ∈ Der(R).

Let (R,D) and (R̄, D̄) be differential rings. If R ⊆ R̄ and D̄|R = D, then (R̄, D̄) is called a
differential extension of (R,D).

Theorem 5.1.1. 1) Let (R,D) be a differential integral domain. Then D can be uniquely extended
to the quotient field F of R by

D(
a

b
) =

D(a)b− aD(b)

b2
.

2) Let (F,D) be a differential field and α be algebraic over F . Then D can be uniquely extended
to the algebraic extension F (α).

3) Let (F,D) be a differential field and t be transcendental over F . Then D can be uniquely
extended to F (t) by fixing the value D(t) ∈ F (t).

Example: Let F = Q(x) and α ∈ F̄ satisfying that

4α2 − 9x = 0.

Then d
dx(4α

2 − 9x) = 8αdα
dx − 9 = 0⇒ dα

dx = 9
8α .

45
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In general, we have

Theorem 5.1.2. Let (F,D) be a differential field of characteristic 0 and α be algebraic over F .
Then D(α) ∈ F (α).

Proof. If α ̸= 0. Assume that P ∈ F [x] be the minimal polynomial of α, i.e., P (α) = 0 and P is
irreducible over F . Write P = Pdx

d + Pd−1x
d−1 + · · ·+ P0, with Pi ∈ F and P0Pd ̸= 0.

D(P (α)) = D(P )(α) + Px(α)D(α),

where D(P ) =
d∑

i=0
D(Pi)x

i, Px =
d∑

i=1
iPix

i−1. Since P is irreducible, we have gcd(P, Px) = 1, which

implies aP + bPx = 1 for some a, b ∈ F [x]. Thus,

D(α) =
−D(P )(α)

Px(α)
= −D(P )(α) · b(α) ∈ F (α).

Corollary 5.1.3. Let α(x) be an algebraic function over C(x). Then α(x) satisfies a nontrivial
linear differential equation with coefficients in C[x], i.e.,

Pn ·
dnα

dxn
+ Pn−1 ·

dn−1α

dxn−1
+ · · ·+ P0α = 0,

where Pi ∈ C[x] and Pn ̸= 0 should be Pi not all zero.

Proof. Since diα
dxi ∈ C(x)(α) and [C(x)(α) : C(x)] = n < ∞, we have {α, dαdx , . . . ,

dnα
dαn } is linearly

dependent over C(x).

Example: Let F = C(x), D = d
dx . We first show that t = exp(x) is transcendental over F .

Note that D(t) = t. Suppose that exp(x) is algebraic over F . Then there exists an irreducible
polynomial P = P0 + P1y + · · ·+ yn ∈ F [y] with P0 ̸= 0 s.t.

tn + Pn−1t
n−1 + · · ·+ P0 = 0

⇒ ntn−1D(t) + D(Pn−1)t
n−1 + (n− 1)Pn−1D(t)tn−2 + · · ·+D(P0) = 0

⇒ ntn + (D(Pn−1) + (n− 1)Pn−1)t
n−1 + · · ·+D(P0) = 0

⇒ D(P0)

P0
= n ̸= 0.

Claim: D(y) = ny has no nonzero solution in C(x).
If f = p(x)

q(x) is a nonzero solution of D(y) = ny, then

D(f) =
D(p)q − pD(q)

q2
=
np

q
⇒ (D(p)− np)q = pD(q). (∗)

Suppose that q /∈ C. Then q = (x− λ)mq̄, where q̄(λ) ̸= 0.

D(q) = m(x− λ)m−1q̄ + (x− λ)mD(q̄)⇒ (x− λ)m−1 | D(q) but (x− λ)m ∤ D(q).

But by (∗), we have q | pD(q), q | D(q) (since gcd(p, q) = 1), this implies (x − λ)m | D(q), which
yields a contradiction. Thus, t = exp(x) is transcendental over C(x).
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Remark: By a similar argument, we can prove that t = log(x) is transcendental over C(x).

Let t = exp(x). We can extend D = d
dx on C(x) to C(x)(t) by defining Dt = t.

Let t = log(x). We can extend D = d
dx on C(x) to C(x)(t) by defining Dt = 1

x .

Definition 5.1.4 (Elementary extensions). Let (E,D) be a differential extension of (F,D). Let
t ∈ E. We say that

• t is algebraic over F , if ∃P ∈ F [x]\F s.t. P (t) = 0;

• t is exponential over F , if ∃ a ∈ F s.t. D(t) = D(a) · t;

• t is logarithmic over F , if ∃ a ∈ F\{0}, s.t. D(t) = D(a)
a .

• t is said to be elementary over F if t is algebraic, exponential, or logarithmic over F .

• E is said to be elementary over F if E = F (t1, . . . , tn) and ti is elementary over F (t1, . . . , ti−1)
for all i = 1, . . . , s. If F = C(x), any element of E is called an elementary function over C(x).

Example: Let F = C(x), D = d
dx . Consider the function

f(x) =
π√

log(exp(
√

1
2x2+1

)2 + x2 + 1)

.

We show that f(x) is elementary over C(x). Let E = C(x)(t1, t2, t3, t4) with

t1 =

√
1

2x2 + 1
, t2 = exp(t1), t3 = log(t22 + x2 + 1), t4 =

√
t3.

Then f = π
t4
∈ E.

Definition 5.1.5. Let (F,D) be a differential field and f ∈ F . If there exists an elementary extension
(E,D) of (F,D) and g ∈ E s.t. f = D(g), then we say that f is elementarily integrable over F .

Problem: Given f ∈ F = C(x)(t1, . . . , tn), an elementary extension of C(x), decide whether f is
elementarily integrable over F . We will show that the following elementary functions:

exp(x2),
exp(x)

x
,

1

log(x)
, sin(x2)

have no elementary (indefinite) integrals.

Definition 5.1.6. Let (K,D) be a differential field, t be transcendental over K. Assume that Dt ∈
K[t], and P ∈ K[t]. We call P a special polynomial if gcd(P,D(P )) = P , and a normal polynomial
if gcd(P,D(P )) = 1.

Remark: If P is irreducible, then P is either special or normal. If P is not irreducible, then P can
be neither special nor normal.

Example:

1) Let K = C(x), t = tan(x). Then D(t) = 1+ t2. Let P1 = 1+ t2, we have D(P1) = 2t(1+ t2), so
P1 is special, Let P2 = t2, we have D(P2) = 2t(1 + t2). Then P2 is neither special nor normal.
P3 = t is normal.



48 CHAPTER 5. SYMBOLIC-INTEGRATION FOR ELEMENTARY FUNCTIONS

2) Let K = C(x), t = exp(x). Then P1 = t is special and P2 = 1 + t is normal.

3) Let K = C(x), t = log(x). Then all monic irreducible polynomials P are normal since
degtD(P ) < degt P .

Definition 5.1.7. Let K be a field of characteristic 0 and t be transcendental over K. Let f ∈ K(t)
and P ∈ K[t] be irreducible. Then f = Pm · g, for some m ∈ Z, g = a

b ∈ K(t) with a, b ∈ K[t] and
gcd(a, b) = 1 such that P ∤ ab, we call m the order of f at P , denoted by ordP (f).

Lemma 5.1.8. Let P ∈ K[t] be irreducible and f, g ∈ K(t). Then

1) ordP (fg) = ordP (f) + ordP (g);

2) ord(f + g) ≥ min{ordP (f), ordP (g)}. The equality holds when ordP (f) ̸= ordP (g).

Remark: If P is not irreducible, then 1) may not be true. For example, P = t2, f = g = t,
ordP (fg) ≥ ordP (f) + ordP (g).

Lemma 5.1.9. Let (K,D) be a differential field and t be transcendental over K with D(t) ∈ K[t].
Let f ∈ K(t) and P be irreducible in K[t]. Then

1) ordP (D(f)) ≥ ordP (f)− 1;

2) If P is a normal polynomial, then

ordP (D(f)) =

{
≥ 0, ordP (f) = 0

ordP (f)− 1, ordP (f) ̸= 0

Proof. 1) Write f = Pmg = Pma
b , gcd(P, ab) = 1, m = ordP (f).

If m = 0, then

ordP (D(f)) = ordP (D(
a

b
)) = ordP (

D(a)b− aD(b)

b2
) ≥ 0 ≥ −1.

If m ̸= 0, then

D(f) = (mPm−1D(P ))
a

b
+ PmD(

a

b
) = Pm−1(mD(P )

a

b
+ PD(

a

b
)).

Since gcd(P, ab) = 1, ordP (
a
b ) = 0, we obtain ordP (mD(P )ab ) ≥ 0.

D(
a

b
) =

bDa− aDb
b2

⇒ ordP (D(
a

b
)) ≥ 0⇒ ordP (PD(

a

b
)) ≥ 1⇒ ordP (mD(P )

a

b
+ PD(

a

b
)) ≥ 0

⇒ ordP (D(f)) ≥ m− 1 = ordP (f)− 1.

2) If ordP (f) = 0, then ordP (D(f)) ≥ 0. If ordP (f) ̸= 0, then ordP (D(f)) ≥ ordP (f)− 1 by 1).
Since P is normal,

gcd(P,D(P )) = 1⇒ ordP (D(P )) = 0⇒ ordP

(
(mPm−1D(P ))

a

b

)
= m− 1.

Since ordP (P
mD(ab )) ≥ m. Then ordP (D(f)) = m− 1.

Remark: Lemma 5.1.9 is very useful in the following discussion. In particular, we have ordP (
D(f)
f ) =

−1 if ordP (f) ̸= 0, and ordP (D(f)) ̸= −1 when P is an irreducible normal polynomial.



5.1. SYMBOLIC INTEGRATION OF ELEMENTARY FUNCTIONS 49

Proposition 5.1.10. Let (K,D) be a differential field and F be a differential extension of K. If
t ∈ F is such that a = t′

t ∈ K and a ̸= 1
n
u′

u for all n ∈ N, u ∈ K\{0}, then t is transcendental over
K, CK(t) = CK and t is the only irreducible special polynomial in K[t].

Proof. Assume that t is algebraic over K, then ∃ an irreducible polynomial P = xn + Pn−1x
n−1 +

· · ·+ P1x+ P0 ∈ K[x] with P0 ̸= 0 s.t.

tn + Pn−1t
n−1 + · · ·+ P0 = 0

By D(t) = at, we have

antn + (P ′
n−1 + Pn−1(n− 1)a)tn−1 + · · ·+ P ′

0 = 0.

Then an =
P ′
0

P0
⇒ a = 1

n
P ′
0

P0
, P0 ∈ K\{0}, which contradicts the hypothesis. So t is transcendental

over K.
If CK(t) ̸= CK , then ∃ p

q ∈ K(t)\K, gcd(p, q) = 1, satisfies that

D(
p

q
) =

D(p)q − pD(q)

q2
= 0⇒ D(p)q = pD(q)⇒ p | D(p) and q | D(q)⇒ p, q are both special.

Claim: Special polynomials in K[t] are of the form btm, b ∈ K, m ∈ N.
Let P = Pnt

n+ · · ·+P0 be a polynomial in K[t] with Pn ̸= 0 and Pi ̸= 0 for some i ∈ {0, . . . , n−1}.
Then D(P ) = (D(Pn) + Pnna)t

n + · · ·+D(P0). If P is special, then P | D(P ), we have

D(Pn) + nPna

Pn
=

D(Pi) + iPia

Pi

⇒ (n− i)a =
D(Pi)

Pi
− D(Pn)

Pn
=

D(Pi/Pn)

Pi/Pn
⇒ a =

1

n− i
D(Pi/Pn)

Pi/Pn

This contradicts the hypothesis. So the claim is valid and t is the only irreducible special polynomial
inK[t]. Therefore, p

q = btm, b ∈ K andm ∈ Z\{0}. It’s easy to check D(pq ) ̸= 0 and CK(t) = CK .

Corollary 5.1.11. exp(f(x)) is transcendental over C(x) if f ∈ C(x)\C.

Proof. Let t = exp(f(x)), f ∈ C(x)\C. Then D(t)
t = D(f(x)). If D(f) = 1

n
D(g)
g for some n ∈ N>0

and g ∈ C(x)\{0}. Let P be any irreducible polynomial in C[x]. Then ordP (D(f)) is either ≥ 0 or
< −1, but

ordP (
D(g)

g
) =

{
≥ 0, ordP (g) = 0

− 1, ordP (g) ̸= 0
.

Thus ordP (g) = 0 for all P , and we obtain g ∈ C, D(f) = 0, f ∈ C, a contradiction. t is
transcendental over C(x) by Proposition 5.1.10.

Proposition 5.1.12. Let (K,D) be a differential field and F be an differential extension of K. Let
t ∈ F be such that D(t) ∈ K and D(t) ̸= D(u) for any u ∈ K. Then t is transcendental over K,
CK(t) = CK and all irreducible polynomials in K[t] are normal.
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Proof. Assume that t is algebraic over K, then ∃ an irreducible polynomial P = xn + Pn−1x
n−1 +

· · ·+ P1x+ P0 ∈ K[x] with P0 ̸= 0 s.t.

tn + Pn−1t
n−1 + · · ·+ P0 = 0.

By D(t) = a ∈ K, we have

(na+D(Pn−1))t
n−1 + (Pn−1(n− 1)a+D(Pn−2))t

n−2 + · · ·+ P1a+D(P0) = 0

Then na+D(Pn−1) = 0 ⇒ D(t) = a = D(− 1
nPn−1), a contradiction.

Let P (t) = tn + Pn−1t
n−1 + · · ·+ P0 ∈ K[t] be an irreducible polynomial.

D(P ) = (na+D(Pn−1))t
n−1 + (Pn−1(n− 1)a+D(Pn−2))t

n−2 + · · ·+ P1a+D(P0)

⇒ degt(D(P )) < degt(P )⇒ gcd(P,D(P )) = 1.

Assume that f = a
b ∈ CK(t) with gcd(a, b) = 1. Then

D(f) =
D(a)b− aD(b)

b2
= 0⇒ D(a)b− aD(b) = 0⇒ D(a)b = D(b)a

⇒a | D(a) and b | D(b)⇒ a, b are both special
⇒a, b ∈ K ⇒ f ∈ CK ⇒ CK(t) = CK .

Corollary 5.1.13. log(f(x)) is transcendental over C(x) if f ∈ C(x)\C.

Proof. Let t = log(f(x)). Then D(t) = D(f(x))
f(x) . Claim: D(t) ̸= D(g) for any g ∈ C(x).

Otherwise, D(f)
f = D(g). Since f ∈ C(x)\C, there exists an irreducible polynomial P ∈ C[x] s.t.

ordP (f) ̸= 0. Then ordP (
D(f)
f ) = −1. But ordP (D(g)) ̸= −1 for any P , a contradiction.

5.2 Liouville Theorem and its applications

Let (E,′ ) be a differential extension of (F,′ ) with char(F ) = 0. Let α ∈ E be an algebraic element

over F with the minimal polynomial P = xn +
n−1∑
i=0

Pix
i ∈ F [x] s.t. P (α) = 0. Then [F (α) : F ] = n

and {1, α, . . . , αn−1} is a basis of F (α) over F . Assume that λ1, . . . , λn be roots of P in F̄ . Then
we have {

Pn−1 = −(λ1 + · · ·+ λn)

P0 = (−1)nλ1 · · ·λn

For any β ∈ F (α), we define ϕβ : F (α)→ F (α) by ϕβ(γ) = βγ, ∀γ ∈ F (α). Then ϕ(β) is linear and
we call ϕβ the multiplication map associated with β. Let {α1, . . . , αn} be a basis of F (α) over F .
Then

ϕβ

α1
...
αn

 =Mβ

α1
...
αn

 , where Mβ ∈ Fn×n.

The matrix Mβ is called the matrix representation of β w.r.t. the basis {α1, . . . , αn}. We know that
the matrix representations of β w.r.t. two different bases are similar.
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Definition 5.2.1. Let β ∈ F (α) and Mβ be a matrix representation of β w.r.t. some basis. We call
Tr(Mβ) the trace of β in F (α) over F , denoted by TrF (α)/F (β) and call det(Mβ) the norm of β in
F (α) over F , denoted by NF (α)/F (β).

Remark: Since similar matrices have the same trace and norm, the above definitions of traces and
norms are independent of bases.

Assume that A,B ∈ Fn×n are similar, i.e. ∃ invertible P ∈ Fn×n s.t. A = P−1BP . Then

|λI −A| = |λI − P−1BP | = |P−1(λI −B)P | = |λI −B|.

So the characteristic polynomial of A and B are the same.
Write |λI −A| = λn + an−1λ

n−1 + · · ·+ a0 = (λ− λ1) · · · (λ− λn). Then we have{
Tr(A) = λ1 + · · ·+ λn

det(A) = λ1 · · ·λn

So Tr(A) and det(A) are stable under similar transformations.

Theorem 5.2.2. Let α be algebraic over F with the minimal polynomial P =
n∑

i=0
Pix

i ∈ F [x]. Let

α1 = α, α2, . . . , αn be the distinct roots of P in F̄ , and σi : F (α) → F̄ be the F -embedding defined
by σi(α) = αi. Then σi(β

′) = (σi(β))
′ for any β ∈ F (α).

Proof. It suffices to show that σi(α′) = (σi(α))
′. Let P0 =

n∑
i=0

P ′
ix

i and P1 =
n∑

i=1
iPix

i−1.

Then for any root αi of P ,

α′
i = −

P0(αi)

P1(αi)
= Q(αi), where Q ∈ F [x] and degx(Q) ≤ n− 1.

Then for any i ∈ {1, 2, . . . , n}, we have

σi(α
′
1) = σi(Q(α1)) = Q(σi(α1)) = (αi)

′ = (σi(α1))
′.

Proposition 5.2.3. Let (F,′ ) be a differential field of characteristic 0 and α be algebraic over F
and α ̸= 0. Let β1, β2 ∈ F (α). Then

1) Tr(β1 + β2) = Tr(β1) + Tr(β2);

2) N(β1β2) = N(β1)N(β2);

3) N(α)′

N(α) = Tr(α
′

α ).

Proof. We only show 3). Let P = xn +
n−1∑
i=0

Pix
i ∈ F [x] be the minimal polynomial of α. Then the

multiplication matrix of α w.r.t. the basis {1, α, . . . , αn−1} is of the form

Mα =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
−P0 −P1 −P2 · · · −Pn−1

 .



52 CHAPTER 5. SYMBOLIC-INTEGRATION FOR ELEMENTARY FUNCTIONS

Then |xI −Mα| = P0 + P1x+ · · ·+ Pn−1x
n−1 + xn. Then

Tr(α) = −Pn−1 = σ1(α) + · · ·+ σn(α)

N(α) = (−1)nP0 = σ1(α) · · ·σn(α).

In general,1 we have ∀β ∈ F (α),

TrF (α)/F (β) = σ1(β) + · · ·+ σn(β)

NF (α)/F (β) = σ1(β) · · ·σn(β).

Then,

N(α)′

N(α)
=

n∏
i=1

σi(α)
′

n∏
i=1

σi(α)

=

n∑
i=1

(σi(α))
′

σi(α)
=

n∑
i=1

σi(α
′)

σi(α)
=

n∑
i=1

σi(
α′

α
) = Tr(

α′

α
).

Theorem 5.2.4 (Liouville’s Theorem). Let (F,′ ) be a differential field of characteristic 0 and f ∈ F .
If there exists an elementary extension E = F (t1, . . . , tn) with CE = CF and g ∈ E s.t. f = g′, then
∃ v ∈ F , u1, . . . , um ∈ F ∗ = F\{0}, c1, . . . , cm ∈ CF s.t.

f = v′ +
m∑
i=1

ci
u′i
ui
.

Proof. We proceed by induction on n. When n = 0, E = F and the assertion holds by taking v = g
and ci = 0 (for all i = 1, . . . ,m). Assume that the assertion holds for n ≤ s − 1. We now consider
the case n = s. Let K = F (t1). Then E = K(t2, . . . , ts), which is an (s − 1)-tuple extension of K.
We apply the hypothesis assumption to K and E.2 Then there exist ṽ ∈ K, ũ1, . . . , ũm ∈ K\{0},
c̃1, . . . , c̃m ∈ CK , s.t.

f = ṽ′ +
m∑
i=1

c̃i
ũi

′

ũi
.

Case 1: t1 is algebraic over F with [K : F ] = r.
Then there exist r F -embeddings σj : F (t1)→ F̄ (j = 1, . . . , r). Since f ∈ F , we have

f = σj(f) = σj(ṽ
′ +

m∑
i=1

c̃i
ũi

′

ũi
) = σj(ṽ)

′ +
m∑
i=1

c̃iσj(
ũi

′

ũi
)

⇒ rf =
r∑

j=1

σj(ṽ)
′ +

m∑
i=1

r∑
j=1

c̃iσj(
ũi

′

ũi
) = (Tr(ṽ))′ +

m∑
i=1

c̃i
N(ũi)

′

N(ũi)
.

Then

f = v′ +

m∑
i=1

ci
u′i
ui
, where v =

Tr(ṽ)
r
∈ F , ci =

c̃i
r
∈ CF and ui = N(ũi) ∈ F ∗.

Case 2: t1 is transcendental over F .
If t1 is either exponential or logarithmic over F , then

t′1 ∈ F [t1], f = ṽ′ +
m∑
i=1

c̃i
ũi

′

ũi
, ṽ, ũi ∈ F (t1).

1See Lang Algebra, P. 284-288, Proposition 5.6.
2Note that F ⊆ K ⊆ E and CF = CE , thus CK = CE
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W.L.O.G., we may assume that ũi ∈ F [t1] is irreducible and coprime to each other if ũi /∈ F (using
the logarithmic derivative formula).
Claim 1: For any irreducible normal polynomial P ∈ F [t1], we have

1) ordP (ṽ) ≥ 0;

2) ordP (ũi) = 0 for i = 1, . . . ,m.

Proof of the Claim 1 1) Suppose that ordP (ṽ) < 0. Then ordP (ṽ
′) = ordP (ṽ) − 1. Note that

ordP (f) = 0 and

ordP (
ũi

′

ũi
) =

{
≥ 0, ordP (ũi) = 0

− 1, ordP (ũi) ̸= 0

which implies that

ordP (ṽ
′) = ordP (f −

m∑
i=1

c̃i
ũi

′

ũi
) ≥ −1,

a contradiction. Thus, 1) is valid.
2) Suppose that ordP (ũi) ̸= 0 for some i ∈ {1, . . . ,m}. Then ordP (c̃i

ũi
′

ũi
) = −1. By 1), we have

ordP (f − ṽ′) > −1, but ordP (
m∑
i=1

c̃i
ũi

′

ũi
) = −1, a contradiction. Therefore, Claim 1 is proved.

Case 2.1: t1 is logarithmic over F , i.e., t′1 =
u′
0

u0
for some u0 ∈ F .

In this case, we first show that t′1 ̸= u′ for any u ∈ F . If t′1 = u′ for some u ∈ F , then (t1 − u)′ = 0.
t1 − u ∈ CF (t) = CF ⇒ t1 ∈ F , which contradicts the assumption that t1 is transcendental over F .
Then all the irreducible polynomials in F [t1] are normal by Proposition 5.1.12. By Claim 1, we have

ũi ∈ F for all i = 1, . . . ,m and ṽ ∈ F [t1]. Since f −
m∑
i=1

c̃i
ũi

′

ũi
∈ F , we have

ṽ = c0t1 + v, where c0 ∈ CF and v ∈ F.

Then

f = ṽ′ +

m∑
i=1

c̃i
ũi

′

ũi
= c0

u′0
u0

+ v′ +

m∑
i=1

c̃i
ũi

′

ũi
.

Hence the assertion holds.
Case 2.2: t1 is exponential over F , i.e., t′1 = u′0t1 for some u0 ∈ F .
We first show that t′1

t1
̸= 1

l
a′

a for any l ∈ N\{0} and a ∈ F\{0}. If t′1
t1

= 1
l
a′

a , then (
tl1
a )

′ = 0,

so tl1
a ∈ CF (t) = CF , which contradicts the assumption that t1 is transcendental over F . Then

by Proposition 5.1.10, the only irreducible special polynomial in F [t1] is t1. By Claim 1, we have
ṽ ∈ F [t1, t−1

1 ] and at most one of ũi’s is equal to t1, say ũ1 = t1. Then

m∑
i=1

c̃i
ũi

′

ũi
= c̃1

t′1
t1

+
m∑
i=2

c̃i
ũi

′

ũi
= (c̃1u0)

′ +
m∑
i=2

c̃i
ũi

′

ũi
∈ F.

Since f ∈ F , we have ṽ′ = f−
m∑
i=1

c̃i
ũi

′

ũi
∈ F . We claim that ṽ ∈ F . Suppose that ṽ =

∑
−d≤i≤d

ait
i
1 /∈ F .

Then ∃ − d ≤ i ≤ d with i ̸= 0 s.t. ai ̸= 0. Then

ṽ′ =
∑

−d≤i≤d

(a′i + iu′0ai)t
i
1.
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Since ṽ′ ∈ F and t1 is transcendental over F , we have

a′i + iu′0ai = 0⇒ u′0 =
t′1
t1

= −1

i

a′i
ai
,

which is a contradiction. Hence f = (ṽ + c̃1u0)
′ +

m∑
i=2

c̃i
ũi

′

ũi
, ũi ∈ F . This completes the proof.

Remark: There is a stronger version of Liouville’s theorem saying that if f has an elementary
integral in E = F (t1, . . . , tn), then ∃ v ∈ F , c1, . . . , cm ∈ C̄F , and u1, . . . , um ∈ F (c1, . . . , cm) s.t.

f = v′ +
m∑
i=1

ci
u′i
ui
.

See Bronstein’s Book: Symbolic Integration (Theorem 5.5.3).
But we will consider complex functions which is defined over C. And we knew that C is algebraically
closed. So we can always assume that no new constants is needed to express the integral.

Applications of Liouville’s Theorem
We can now show that

exp(x2),
1

log(x)
,
exp(x)

x
, exp(exp(x)), log(log(x))

have no elementary integral.

Example 1: f = exp(x2) has no elementary integral.
Let F = C(x)(f), which is elementary over C(x). Note that f is transcendental over C(x). If f has
an elementary integral, then ∃ v ∈ F , c1, . . . , cm ∈ CF = C, and u1, . . . , um ∈ F s.t.

f = v′ +
m∑
i=1

ci
u′i
ui
.

By the order estimate, we have, for all irreducible normal P ∈ C(x)[f ], ordP (v) ≥ 0 and ordP (ui) = 0.

Then v ∈ C(x)[f, f−1] and at most one of ui’s is equal to f . Since degf (f −
m∑
i=1

ci
u′
i

ui
) = 1, we have

v = af + b, where a, b ∈ C(x) and a ̸= 0. Then f = (af)′ = (a′+2xa)f , which implies 1 = a′+2xa.
By the order estimate, we have shown that the equation 1 = y′ + 2xy has no solution in C(x). So
f = exp(x2) has no elementary integral.

Example 2: f = 1
log(x) has no elementary integral.

Let F = C(x)(t), with t = log(x), which is transcendental over C(x). If f has an elementary integral
over F , then ∃ v ∈ F , u1, . . . , um ∈ F\{0}, and c1, . . . , cm ∈ C s.t.

1

t
= v′ +

m∑
i=1

ci
u′i
ui
.

By the order estimate, we can show that ordP (v) ≥ 0 and ui = t or ordP (ui) = 0 for any irreducible
normal polynomial P ∈ C(x)[t]. In fact, if P ̸= t, then

ordP (v
′) =

{
≥ 0, ordP (v) ≥ 0

< −1, ordP (v) < 0
.
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But ordP (
1
t −

m∑
i=1

ci
u′
i

ui
) is either ≥ 0 or −1. Then we have ordP (v) ≥ 0. If ordP (ui) ̸= 0 for some

i ∈ {1, . . . ,m}, then ordP (
1
t −

m∑
i=1

ci
u′
i

ui
) = −1, contradicts with ordP (v

′) ≥ 0. Then ordP (ui) = 0 for

all i ∈ {1, . . . ,m}. If P = t, then ordP (
1
t ) = −1, which implies that ui = t for some i. Then

1

t
= v′ + ci

t′

t
+

m∑
j=1
j ̸=i

cj
u′j
uj
, ci ∈ C.

Thus, 1 = cit
′ = ci

1
x , which is a contradiction.
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Chapter 6

Algorithms and open problems in
differential algebra

6.1 Well-ordering theorem for differential polynomials

Let (K, δ) be a differential field of characteristic 0 and consider the differential polynomial ring
K{Y } ≜ K{y1, . . . , yn}. We have introduced the theory of differential characteristic sets in Section
2.1, in this section we focus on the computational aspects.

We now come to the well-ordering of a (finite) differential polynomial set Σ ⊆ K{Y }. Fix a
ranking R on K{Y }.

Definition 6.1.1. An autoreduced set of lowest rank among all autoreduced sets belonging to Σ (i.e.
each element belongs to Σ) is called a basic set of Σ.

Lemma 6.1.2. Let Σ be a finite set of nonzero δ-polynomials in K{Y }. Then Σ necessarily has
basic sets and there is a mechanical method in getting such a basic set in a finite number of steps.

Proof. As Σ is finite, the existence of basic sets is evident. So the problem reduces to a mechanical
generation of such a set. To show this, first choose A1 ∈ Σ of lowest rank. Let Σ1 = {f ∈ Σ |
f is reduced w.r.t. A1}. If Σ1 = ∅, then output A1. Otherwise, choose A2 ∈ Σ1 of lowest rank.
Then A1, A2 is autoreduced. Let Σ2 = {f ∈ Σ | f is reduced w.r.t. A1, A2}. If Σ2 = ∅, A1, A2 is a
basic set of Σ. Otherwise, choose A3 ∈ Σ2 of lowest rank and proceed as before. As A1, A2, A3 . . .
constitute an autoreduced set, we have to stop in a finite number of steps and finally get a basic set
in a mechanical manner.

Lemma 6.1.3. Let Σ be a finite set of nonzero δ-polynomials with a basic set A : A1, A2, . . . , Ap of
which A1 /∈ K. Let B be a nonzero δ-polynomial reduced w.r.t. A. Then the set Σ1 = Σ ∪ {B} will
have a basic set of rank lower than that of A.

Proof. If B ∈ K, then B is a basic set of Σ1 of rank lower than that of A. Otherwise, there exists
i such that rk(B) < rk(Ai) and rk(B) > rk(Ai−1). Since B is reduced w.r.t. each Aj , we obtain
A1, . . . , Ai−1, B is an autoreduced set in Σ1 of rank lower than A. The basic set of Σ1 will have
therefore a fortiori a rank lower than that of A.

Let Σ be a finite set of δ-polynomials in K{Y }. Set Σ1 = Σ. By Lemma 6.1.2, Σ1 has a basic
set, say A1. Let R1 = {δ-rem(f,A1) | f ∈ Σ1\A1}\{0}. If R1 = ∅, ouput A1. If R1 ̸= ∅, set
Σ2 = Σ1 ∪ R1 and Σ2 has a basic set, say A2. By Lemma 6.1.3, A2 is of lower rank than A1. If
R2 = ∅, output A2. Otherwise, we can proceed as before. In this way we shall get a sequence of sets
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of δ-polynomials Σ1 ⊆ Σ2 ⊆ · · · with corresponding basic sets A1,A2, . . . having decreasing ranks.
Thus, such a sequence can have only a finite number of terms. In other words, if Σq is the last one
of such a sequence with a basic set Aq, then Rq = ∅, i.e., ∀ f ∈ Σq, δ-rem(f,Aq) = 0. Output Aq.

Σ1 = Σ ⊆ Σ2 = Σ1 ∪R1 ⊆ · · · ⊆ Σq = Σq−1 ∪Rq−1

A1 > A2 > · · · > Aq

R1 ̸= ∅ R2 ̸= ∅ · · · Rq = ∅
(6.1)

Definition 6.1.4. The above Aq is called a characteristic set of the finite δ-polynomial set Σ.

Theorem 6.1.5 (Well-ordering Principle). Given a finite δ-polynomial set Σ ⊆ K{y1, . . . , yn}, there
is an algorithm to obtain a characteristic set A of Σ after mechanically a finite number of steps.
Moreover, we have

V(A/HA) ⊆ V(Σ) ⊆ V(A),

and
V(Σ) = V(A/HA) ∪ ∪A∈A

(
V(Σ, IA) ∪ V(Σ, SA)

)
.1

Proof. The first assertion has been shown above the scheme. Note that Rk ⊆ [Σk] for each k, so
V(Σk) = V(Σk+1) and thus, V(Σ1) = V(Σ2) = · · · = V(Σq) = V(Σ). On the other hand, since
δ-rem(f,Aq) = 0 for all f ∈ Σq, ∃ iA, sA ∈ N s.t.

∏
A∈Aq

IiAA SsA
A f ∈ [Aq]. It follows that any δ-zero

of Aq, which doesn’t annul HA, is necessarily also a δ-zero of Σq and thus a δ-zero of Σ.

Remark: Each newly obtained δ-polynomial set Σ ∪ {IA} or Σ ∪ {SA} has basic sets of rank
lower than that of Σ. Σq ∪ {IA} (or ∪{SA}) has basic sets of rank lower than that of Σq and
V(Σq, IA) = V(Σ, IA). Continuing the above procedure for Σq ∪ {IA} or Σq ∪ {SA} and also for the
new δ-polynomial sets obtained, since the basic sets are strictly decreasing, this procedure has to
end in a finite number of steps and so we get the following.

Zero Decomposition Theorem (Weak Form)
There is an algorithmic procedure which permits us to give for Σ a decomposition of the form

V(Σ) = ∪kV(Bk/HBk
),

where Bk is a characteristic set for some δ-polynomial set.

Example: Let f = y′1 + 1 and g = y1 + y′2 in Q(t){y1, y2}.
(1) Consider the elimination ranking R1 with y1 > y2. We compute a characteristic set of the set
Σ = {f, g} following the scheme (6.1). Let Σ1 = Σ. A basic set of Σ1 is A1 := g. Compute
r1 ≜ δ-rem(f,A1) = f − g′ = 1 − y′′2 . So R1 = {r1}. Let Σ2 = Σ ∪ {r1} = {f, g, r1}. A basic set
of Σ2 is A2 := r1, g. Compute r2 ≜ δ-rem(f,A2) = 0. So R2 = ∅ and a characteristic set of Σ is
A2 = r1, g.
(2) Consider the orderly ranking R2 with y1 > y2. Let Σ1 = Σ. A basic set of Σ1 is A1 = g, f . So
R1 = ∅ and a characteristic set of Σ w.r.t. R2 is A = g, f .

6.2 Differential Decomposition Theorems/Algorithms

In this section, we shall consider the main decomposition problem in differential algebra and give a
partial answer to it:

1HA =
∏

A∈A IASA, V(A/HA) = {η ∈ K̄n | A(η) = 0 and HA(η) ̸= 0}.
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Decomposition Problem: Given a finite subset Σ ⊆ K{Y }, decompose the radical δ-ideal {Σ}
into an irredundant intersection of prime δ-ideals: {Σ} = P1 ∩ P2 ∩ · · · ∩ Pr.

Since a prime δ-ideal P is completely determined by its characteristic set A (i.e., P = sat(A)),
the above decomposition problem can be separated into the following two problems:
Problem 1: Given Σ, to find a finite set Λ of autoreduced sets of K{Y }, each of which is a
characteristic set of a prime δ-ideal containing Σ, such that Λ contains a characteristic set of each
component of {Σ}. That is, {Σ} = sat(B1) ∩ · · · ∩ sat(Bl) with Λ = {B1, . . . ,Bl}.
Problem 2: Given an aotureduced set A of K{Y }, to determine whether or not A is a characteristic
set of a component of {Σ}.
Problem 2’: Given that A and B are characteristic sets of the prime δ-ideals P and Q respectively,
to determine whether or not P ⊆ Q.

Decomposition Problem = Problem 1 + Problem 2
= Problem 1 + Problem 2’

Remark:

1○ Problem 1 has been solved (Ritt-Kolchin decomposition Algorithm)

2○ Problem 2 in the general case is still not solved, and we have a complete answer for the case
when Σ consists of a single δ-polynomial given by Ritt’s component theorem and the low power
theorem.

3○ Although it is trivial to decide whether P = Q, Problem 2’ is currently open, even for the
special case below:

Ritt’s problem Given A ∈ K{y1, . . . , yn} irreducible with A(0, . . . , 0) = 0, decide whether
(0, . . . , 0) is a zero of sat(A), or equivalently, whether sat(A) ⊆ [y1, . . . , yn].

In this section, we shall focus on a solution of Problem 1.
Question: Given an autoreduced set A ⊆ K{Y }, give a necessary and sufficient condition for A to
be a characteristic set of a prime δ-ideal P ⊆ K{Y }.

Lemma 6.2.1 (Rosenfeld’s lemma in ordinary differential case). Let A = A1, . . . , Ap be an autore-
duced set in K{Y } w.r.t. a ranking and f ∈ K{Y } be partially reduced w.r.t. A. Then

f ∈ sat(A) = [A] : H∞
A ⇔ f ∈ (A) : H∞

A .

Proof. “⇐” Trivial.
“⇒” Suppose f ∈ sat(A). Then ∃m ∈ N and cij ∈ K{Y } s.t.

Hm
Af =

p∑
i=1

ci0Ai +
p∑

i=1

ki∑
j=1

cijA
(j)
i . (∗)

Note that for j ≥ 1, A(j)
i = SAi · δj(uAi) + Tij for some Tij ∈ K{Y } free of δj(uAi). Let Φ =

{δj(uAi) | cij ̸= 0, j ≥ 1, i = 1, . . . , p}. If Φ ̸= ∅, take the greatest v = δj(uAi) in Φ and substitute
δj(uAi) = − Tij

SAi

at both sides of (∗) and set Φ = Φ\{v}. Continue this process and successively

substitute δj(uAi) = − Tij

SAi

into (∗) for all δj(uAi) in Φ. Clearing denominators by multiplying a

power product Sl
A of SAi at both sides of the obtained equality, we have
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Sl
A ·Hm

Af =
p∑

i=1
c̄i0Ai, where c̄i0 ∈ K{Y }.

Thus, f ∈ (A) : H∞
A .

Lemma 6.2.2. Let A be an autoreduced set in K{Y } w.r.t. a ranking R. Then A is a δ-
characteristic set of a prime δ-ideal if and only if (A) : H∞

A is a prime algebraic ideal in K{Y }
and (A) : H∞

A contains no nonzero element reduced w.r.t. A.

Proof. “⇒” Take a smallest finite subset V ⊆ Θ(Y ) such that A ⊆ K[V ]. Let IA = {f ∈ K[V ] |
∃m ∈ N s.t. Hm

Af ∈ (A)}. Then we have (A) : H∞
A = (IA)K{Y } and IA = ((A) : H∞

A ) ∩K[V ].2 By
Lemma 6.2.1, sat(A) ∩K[V ] = ((A) : H∞

A ) ∩K[V ] = IA. So IA is a prime ideal and consequently,
(A) : H∞

A = (IA)K{Y } is prime too. Since A is a characteristic set of sat(A), (A) : H∞
A contains no

nonzero δ-polynomial reduced w.r.t. A.
“⇐” To show 1○ sat(A) is prime and 2○ A is a characteristic set of sat(A).

1○ Given f1, f2 ∈ K{Y } with f1f2 ∈ sat(A). Let ri = δ-rem(fi,A). Then Hmi
A fi ≡ ri mod [A] ⇒

r1r2 ∈ sat(A) partially reduced w.r.t. A ⇒ By Lemma 6.2.1, r1 ∈ (A) : H∞
A or r2 ∈ (A) : H∞

A .
Thus, f1 ∈ sat(A) or f2 ∈ sat(A).
2○ ∀f ∈ sat(A), suppose r = δ-rem(f,A). Then r ∈ (A) : H∞

A by Lemma 6.2.1. Since r is reduced
w.r.t. A, r = 0. Thus, A is a δ-characteristic set of sat(A).

Remark 6.2.3. Given an autoreduced set A ⊆ K{Y }, denote V to be the set of all derivatives
appearing effectively in A. By the proof of Lemma 6.2.2,

A is a δ-characteristic set of a prime δ-ideal
⇔ In K[V ], A is an algebraic characteristic set of IA and IA is prime.

So the question has been reduced to an algebraic one. Below, we follow Wu’s constructive theory for
irreducible ascending chains.

Algebraic Case: Let A = A1, . . . , Ap ⊆ K[u1, . . . , ud, x1, . . . , xp] be an ascending chain (i.e., an
autoreduced set with all elements of order 0) w.r.t. the ranking u1 < · · · < ud < x1 < · · · < xp and
ld(Ai) = yi.

A


A1 = I1(u1, . . . , ud)x

m1
1 + ∗xm1−1

1 + · · ·+ ∗x1 + ∗;
A2 = I2(u1, . . . , ud, x1)x

m2
2 + ∗xm2−1

2 + · · ·+ ∗;
· · ·

Ap = Ip(u1, . . . , ud, x1, . . . , xp−1)x
mp
p + ∗xmp−1

p + · · ·+ ∗.

degree (Ai, xj) < mj for j < i.

Definition 6.2.4 (Irreducible ascending chain). A : A1, . . . , Ap is said to irreducible if A possesses
the following properties:

• Let K0 = K(u1, . . . , ud) be transcendental extension field of K adjoining u1, . . . , ud. Then A1,
as a polynomial Ã1 in K0[x1], is irreducible in K0[x1]. Take a solution η1 of Ã1(x1) = 0 and
set K1 = K0(η1).

2Indeed, for all f ∈ (A) : H∞
A , ∃ cA ∈ K{Y } s.t. Hm

Af =
∑

A∈A cA · A. Rewrite f and each cA as δ-polynomials
in Θ(Y )\V with coefficients in K[V ], then f =

∑
i fi(V )Mi and cA =

∑
i cAi(V )Mi with Mi being distinct δ-

monomials in Θ(Y )\V . Then Hm
Afi =

∑
A∈A cAi · A in K[V ]. Thus, fi ∈ IA and (A) : H∞

A = (IA)K{Y }. Similarly,
IA = ((A) : H∞

A ) ∩K[V ].
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• Ã2 = A2(u1, . . . , ud, η1, x2) ∈ K1[x2] is irreducible. Take a solution η2 of Ã2(x2) = 0 and set
K2 = K1(η2).

• Ã3 = A3(u1, . . . , ud, η1, η2, x3) ∈ K2[x3] is irreducible. Take a solution η3 of Ã3(x3) = 0 and
set K3 = K2(η3).

• Suppose that proceeding in the same manner, we get successively algebraic extensions Ki =
Ki−1(ηi), polynomial Ãi = Ai(u1, . . . , ud, η1, . . . , ηi−1, xi) is irreducible in Ki−1[xi].

The obtained point η̃ = (u1, . . . , ud, η1, . . . , ηp) is called a generic point of the irreducible A.

Note: The irreducibility of A could be determined mechanically relying on factorization algorithms
on towers of algebraic extensions.

Lemma 6.2.5. If the ascending chain A is irreducible with a generic point η̃ = (u1, . . . , ud, η1, . . . , ηp),
then

prem(f,A) = 0⇔ f(η̃) = 0.

Furthermore, asat(A) = (A) : I∞A is a prime ideal with A a characteristic set of it.3

Proof. Let Ak = A1, . . . , Ak (1 ≤ k ≤ p). Then Ak is irreducible in K[u1, . . . , ud, x1, . . . , xk] with
a generic point η̃k = (u1, . . . , ud, η1, . . . , ηk). We shall prove by induction on k the following two
assertions:

(1k) Ik( ˜ηk−1) ̸= 0 for Ik = init(Ak).

(2k) If Rk ∈ K[u1, . . . , ud, x1, . . . , xk] is reduced w.r.t. Ak and Rk(η̃k) = 0, then Rk ≡ 0.

First note that (1k) is a consequence of (2k−1). And (11) is trivial. So it suffices to prove (2k) by
induction on k. For k = 1, if R1 is reduced w.r.t. A1 = A1, then deg(R1, x1) < m1. But R1(η̃1) = 0
⇒ A1 | R1 ⇒ R1 ≡ 0. Suppose (2k−1) has been proved. Consider any Rk ∈ K[u1, . . . , ud, x1, . . . , xk]
reduced w.r.t. Ak and Rk(η̃k) = 0. Rewrite Rk as a polynomial in xk, then Rk = s0x

r
k+s1x

r−1
k +· · ·+

sr for si ∈ K[u1, . . . , ud, x1, . . . , xk−1] and r < mk. Since Rk is reduced w.r.t. Ak, each si is reduced
w.r.t. Ak−1. Since Rk(η̃k) = 0 = s̃0η

r
k + s̃1η

r−1
k + · · · + s̃r with s̃i = si(u1, . . . , ud, η1, . . . , ηk−1),

r < mk ⇒ s̃i = 0 ∀ i = 0, . . . , r. By induction hypothesis on (2k−1), si ≡ 0 ⇒ Rk ≡ 0, which
completes the proof of (2k). Thus, by induction (1k) and (2k) are proved.

If prem(f,A) = 0, I l11 · · · I
lp
p f ∈ (A) ⇒ f(η̃) = 0 by (1). Given f with f(η̃) = 0, r = prem(f,A)

⇒ r(η̃) = 0 ⇒ r = 0 by (2). Thus, prem(f,A) = 0 ⇔ f(η̃) = 0.
Clearly, asat(A) = {f ∈ K[u1, . . . , ud, x1, . . . , xp] | f(η̃) = 0}. Thus, asat(A) is prime and A is a

characteristic set of asat(A).

Another characterization of irreducibility of ascending sets:
Consider now A : A1, . . . , Ap not necessarily irreducible. Suppose ∃ k s.t. Ak−1 := A1, . . . , Ak−1

is irreducible with a generic point ˜ηk−1 = (u1, . . . , ud, η1, . . . , ηk−1) and Ãk ∈ Kk−1[xk] is reducible
with

Ãk = g1 · · · gh
in which each gi ∈ Kk−1[xk] is irreducible and h ≥ 2. Since the denominators of coefficients of gi
are polynomials in ˜ηk−1, by multiplying a common multiple of the denominators, we get

D̃Ãk = G̃1 · · · G̃h

3Remark: prem(f,A) (= δ-rem(f,A)) obtained only by performing the proof of Theorem 2.1.12.
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in which D ∈ K[u1, . . . , ud, x1, . . . , xk−1], Gi ∈ K[u1, . . . , ud, x1, . . . , xk] and G̃i = Gi( ˜ηk−1). We
may also assume D and Gi are reduced w.r.t. Ak.

Write DAk −G1 · · ·Gh =
∑

iBix
i
k with Bi ∈ K[u1, . . . , ud, x1, . . . , xk−1]. Then∑

i

Bi( ˜ηk−1)x
i
k = 0⇒ Bi ∈ asat(Ak−1)⇒ I

ri,1
1 · · · Iri,k−1

k−1 Bi ∈ (Ak−1)

⇒ Is11 · · · I
sk−1

k−1 (DAk −G1 · · ·Gh) ∈ (A1, . . . , Ak) where sj = max
i
{ri,j}.

Lemma 6.2.6. Given an autoreduced set A = A1, . . . , Ap, if A is reducible, then ∃ k (1 ≤ k ≤ p) and
some D ∈ K[u1, . . . , ud, x1, . . . , xk−1] and Gi ∈ K[u1, . . . , ud, x1, . . . , xk] s.t. Ak−1 = A1, . . . , Ak−1

is irreducible and
DAk ≡ G1G2 · · ·Gh mod (Ak−1)

where D is reduced w.r.t. Ak−1 and deg(Gi, xk) > 0. Thus,

Zero(A/IA) = Zero(A, D/IA) ∪ Zero(B1/IA ·D) ∪ · · · ∪ Zero(Bh/IA ·D), 4

where Bi is obtained from A by replacing Ak by Gi.

Return to the differential case: Fix a ranking R on K{Y }. Given a finite subset Σ ⊆ K{Y },
mechanical procedures to decompose V(Σ):
Step 1: Apply well-ordering principle to Σ:

V(Σ) = V(A/HA) ∪ ∪A∈A
(
V(Σ, IA) ∪ V(Σ, SA)

)
= · · · = ∪kV(Bk/Jk).

Step 2: Consider V(Bk/Jk). If Bk is reducible, then regard Bk as an algebraic ascending chain in
K[V ] w.r.t. the ordering induced by R. Then at stage i, Bk,i−1 = Bk,1, . . . , Bk,i−1 is irreducible and

DBk,i ≡ G1 · · ·Gh mod (Bk,i−1),

where D is reduced w.r.t. Bk,i−1 and each Gj has the same leader as Bk,i. Thus,

V(Bk/Jk) = V(Bk, D/Jk) ∪ ∪hk=1V( ˆBk,j/D · Jk)
· · · = ∪jV(Ck,j/HCk,j ).

Here, ˆBk,j is obtained by replacing Bk,i by Gj . Continue this procedure until we get the following

Zero Decomposition Theorem (Strong Form)
There is an algorithmic procedure which allows us to give for any finite Σ a decomposition of the
form

V(Σ) = ∪kV(IRRk/Jk ·Gk),

where IRRk is a d-irreducible autoreduced set and Jk = HIRRk
.

Differential decomposition Theorem
V(Σ) = ∪kV(sat(IRRk)), or equivalently, {Σ} = ∩ksat(IRRk).

Recent Algorithms:

1○ Regular decomposition: {Σ} = ([A1] : H∞
Q1

) ∩ · · · ∩ ([Am] : H∞
Qm

).

4Zero(∗) means an algebraic variety.
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2○ (Factorization-free) Characterizable decomposition: {Σ} = sat(A1) ∩ · · · ∩ sat(Al), with Ai

being a characteristic set of sat(Ai).

3○ Rosenfeld-Gröbner algorithm/Maple.

Application (Mechanical Theorem Proving)
Example: Kepler’s Laws =⇒ Newton’s Gravitation Laws

(In polar coordinates)
Kepler’s Laws

(K1) r =
p

1− e cos(θ)
(K2) r

2θ′ = h
=⇒


r = p+ ex

p′ = e′ = 0

xy′ − x′y = h

h′ = 0

(In rectangular coordinates)

Here, p, e, h are constants.

(In polar coordinates)
Newton’s Laws

(N1) a =
Const
r2

(N2) (x
′′, y′′) = −Const · (−x,−y)

=⇒


(
(x′′)2 + (y′′)2

)
r4 = k

k′ = 0

x′′y − xy′′ = 0

(In rectangular coordinates)

HYP = {r − p− ex, p′, e′, xy′ − x′y − h, h′,
(
(x′′)2 + (y′′)2

)
r4 − k}.

Conc = {k′, x′′y − xy′′}.

To show HYP = 0
under non-degenerate−−−−−−−−−−−−−→

condition J ̸=0
Conc = 0.

Rename variables (p, e, r, x, y, h, k) = (x21, x22, x31, x32, x33, x51, x52) and take the elimination rank-
ing with x21 < x22 < x31 < x32 < x33 < x51 < x52. Use the well-ordering principle with selecting
”weak” basic set (not necessarily autoreduced, but initials and separants are partially reduced).

HYP



r = p+ ex

p′ = 0

e′ = 0

xy′ − x′y = h

h′ = 0

r2 = x2 + y2(
(x′′)2 + (y′′)2

)
r4 = k

=⇒ Σ1



x′21 = F1

x′22 = F2

x21 + x22x32 − x31 = F3

x32x
′
33 − x′32x33 − x51 = F4

x′51 = F5

x232 + x233 − x231 = F6

x′′232x
4
31 + x′′233x

4
31 − x52 = F7

Σ1 = {F1, F2, . . . , F7}.
A1 = F1, F2, F3, F6, F4, F7.
r1 = δ-rem(F5,A1) = 4x21

(
(x331x

2
22 − x331 + 2x231x21 − x31x221)x′′31 + x31x21(x

′
31)

2 − x′231x221
)
.

Σ2 = Σ1 ∪ {r1}.
A2 = {F1, F2, r1, F3, F4, F6, F7}.
R2 = ∅.
So A = A2. {

δ-rem(x′52,A) = 0 with h1 = −128x833x822x221
δ-rem(x′′32x33 − x32x′′33,A) = 0 with h2 = 16x333x

3
22x21.

So V(HYP/HHYP) ⊆ V(Conc).
Note that HHYP = 4x21(x

3
31x

2
22 − x331 + 2x231x21 − x31x221)x33x22

F3−→ 4x21x31x
3
22x

3
33.

Non-degenrate elliptic orbits =⇒ x21 = p ̸= 0, x31 = r ̸= 0, x22 = e ̸= 0, x33 = y ̸= 0.
Thus, Kepler’s Laws (K1) and (K2) =⇒ (N1) and (N2).


